Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas H. Pillow is active.

Publication


Featured researches published by Thomas H. Pillow.


Nature | 2015

Novel antibody–antibiotic conjugate eliminates intracellular S. aureus

Sophie M. Lehar; Thomas H. Pillow; Min Xu; Leanna Staben; Kimberly Kajihara; Richard Vandlen; Laura DePalatis; Helga Raab; Wouter L. W. Hazenbos; J. Hiroshi Morisaki; Janice Kim; Summer Park; Martine Darwish; Byoung-Chul Lee; Hilda Hernandez; Kelly M. Loyet; Patrick Lupardus; Rina Fong; Donghong Yan; Cecile Chalouni; Elizabeth Luis; Yana Khalfin; Emile Plise; Jonathan Cheong; Joseph P. Lyssikatos; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; John A. Flygare; Man Wah Tan

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody–antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody–antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Chemical Biology & Drug Design | 2013

Antibody-Drug Conjugates for the Treatment of Cancer

John A. Flygare; Thomas H. Pillow; Paul Aristoff

With over 20 antibody‐drug conjugates in clinical trials as well as a recently FDA‐approved drug, it is clear that this is becoming an important and viable approach for selectively delivering highly cytotoxic agents to tumor cells while sparing normal tissue. This review discusses the critical aspects for this approach with an emphasis on the properties of the linker between the antibody and the cytotoxic payload that are required for an effective antibody‐drug conjugate. Different linkers are illustrated with attention focused on (i) the specifics of attachment to the antibody, (ii) the polarity of the linker, (iii) the trigger on the linker that initiates cleavage from the drug, and (iv) the self‐immolative spacer that liberates the active payload. Future directions in the field are proposed.


Journal of Medicinal Chemistry | 2014

Site-Specific Trastuzumab Maytansinoid Antibody–Drug Conjugates with Improved Therapeutic Activity through Linker and Antibody Engineering

Thomas H. Pillow; Janet Tien; Kathryn Parsons-Reponte; Sunil Bhakta; Hao Li; Leanna Staben; Guangmin Li; Josefa Chuh; Aimee Fourie-O’Donohue; Martine Darwish; Victor Yip; Luna Liu; Douglas D. Leipold; Dian Su; Elmer Wu; Susan D. Spencer; Ben-Quan Shen; Keyang Xu; Katherine R. Kozak; Helga Raab; Richard Vandlen; Gail Lewis Phillips; Richard H. Scheller; Paul Polakis; Mark X. Sliwkowski; John A. Flygare; Jagath R. Junutula

Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.


Nature Chemistry | 2016

Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates

Leanna Staben; Stefan G. Koenig; Sophie M. Lehar; Richard Vandlen; Donglu Zhang; Josefa Chuh; Shang-Fan Yu; Carl Ng; Jun Guo; Yanzhou Liu; Aimee Fourie-O'Donohue; MaryAnn Go; Xin Linghu; Nathaniel L. Segraves; Tao Wang; Jinhua Chen; Binqing Wei; Gail Lewis Phillips; Keyang Xu; Katherine R. Kozak; Sanjeev Mariathasan; John A. Flygare; Thomas H. Pillow

The reversible attachment of a small-molecule drug to a carrier for targeted delivery can improve pharmacokinetics and the therapeutic index. Previous studies have reported the delivery of molecules that contain primary and secondary amines via an amide or carbamate bond; however, the ability to employ tertiary-amine-containing bioactive molecules has been elusive. Here we describe a bioreversible linkage based on a quaternary ammonium that can be used to connect a broad array of tertiary and heteroaryl amines to a carrier protein. Using a concise, protecting-group-free synthesis we demonstrate the chemoselective modification of 12 complex molecules that contain a range of reactive functional groups. We also show the utility of this connection with both protease-cleavable and reductively cleavable antibody-drug conjugates that were effective and stable in vitro and in vivo. Studies with a tertiary-amine-containing antibiotic show that the resulting antibody-antibiotic conjugate provided appropriate stability and release characteristics and led to an unexpected improvement in activity over the conjugates previously connected via a carbamate.


Bioorganic & Medicinal Chemistry Letters | 2015

The cryptophycins as potent payloads for antibody drug conjugates.

Vishal Verma; Thomas H. Pillow; Laura DePalatis; Guangmin Li; Gail Lewis Phillips; Andrew G. Polson; Helga Raab; Susan D. Spencer; Bing Zheng

The cryptophycins are a potent class of cytotoxic agents that were evaluated as antibody drug conjugate (ADC) payloads. Free cryptophycin analog 1 displayed cell activity an order of magnitude more potent than approved ADC payloads MMAE and DM1. This potency increase was also reflected in the activity of the cryptophycin ADCs, attached via a either cleavable or non-cleavable linker.


Drug Metabolism and Disposition | 2016

Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates

Donglu Zhang; Shang-Fan Yu; Yong Ma; Keyang Xu; Peter S. Dragovich; Thomas H. Pillow; Luna Liu; Geoffrey Del Rosario; Jintang He; Zhonghua Pei; Jack Sadowsky; Hans Erickson; Cornelis E. C. A. Hop; S. Cyrus Khojasteh

Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy.


Molecular Cancer Therapeutics | 2017

Modulating Therapeutic Activity and Toxicity of Pyrrolobenzodiazepine Antibody-Drug Conjugates with Self-Immolative Disulfide Linkers

Thomas H. Pillow; Melissa Schutten; Shang-Fan Yu; Rachana Ohri; Jack Sadowsky; Kirsten Achilles Poon; Willy Solis; Fiona Zhong; Geoffrey Del Rosario; Mary Ann T. Go; Jeffrey Lau; Sharon Yee; Jintang He; Luna Liu; Carl Ng; Keyang Xu; Douglas D. Leipold; Amrita V. Kamath; Donglu Zhang; Luke Masterson; Stephen J. Gregson; Philip W. Howard; Fan Fang; Jinhua Chen; Janet Gunzner-Toste; Katherine K. Kozak; Susan D. Spencer; Paul Polakis; Andrew G. Polson; John A. Flygare

A novel disulfide linker was designed to enable a direct connection between cytotoxic pyrrolobenzodiazepine (PBD) drugs and the cysteine on a targeting antibody for use in antibody–drug conjugates (ADCs). ADCs composed of a cysteine-engineered antibody were armed with a PBD using a self-immolative disulfide linker. Both the chemical linker and the antibody site were optimized for this new bioconjugation strategy to provide a highly stable and efficacious ADC. This novel disulfide ADC was compared with a conjugate containing the same PBD drug, but attached to the antibody via a peptide linker. Both ADCs had similar efficacy in mice bearing human tumor xenografts. Safety studies in rats revealed that the disulfide-linked ADC had a higher MTD than the peptide-linked ADC. Overall, these data suggest that the novel self-immolative disulfide linker represents a valuable way to construct ADCs with equivalent efficacy and improved safety. Mol Cancer Ther; 16(5); 871–8. ©2017 AACR.


Bioconjugate Chemistry | 2018

High-Throughput Cysteine Scanning To Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers

Rachana Ohri; Sunil Bhakta; Aimee Fourie-O’Donohue; Josefa dela Cruz-Chuh; Siao Ping Tsai; Ryan Cook; Binqing Wei; Carl Ng; Athena W. Wong; Aaron B. Bos; Farzam Farahi; Jiten Bhakta; Thomas H. Pillow; Helga Raab; Richard Vandlen; Paul Polakis; Yichin Liu; Hans Erickson; Jagath R. Junutula; Katherine R. Kozak

THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.


Cancer Research | 2017

Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody–Drug Conjugates

Niña G. Caculitan; Josefa Chuh; Yong Ma; Donglu Zhang; Katherine R. Kozak; Yichin Liu; Thomas H. Pillow; Jack Sadowsky; Tommy K. Cheung; Qui Phung; Benjamin Haley; Byoung-Chul Lee; Robert W. Akita; Mark X. Sliwkowski; Andrew G. Polson

Antibody-drug conjugates (ADC) are designed to selectively bind to tumor antigens via the antibody and release their cytotoxic payload upon internalization. Controllable payload release through judicious design of the linker has been an early technological milestone. Here, we examine the effect of the protease-cleavable valine-citrulline [VC(S)] linker on ADC efficacy. The VC(S) linker was designed to be cleaved by cathepsin B, a lysosomal cysteine protease. Surprisingly, suppression of cathepsin B expression via CRISPR-Cas9 gene deletion or shRNA knockdown had no effect on the efficacy of ADCs with VC(S) linkers armed with a monomethyl auristatin E (MMAE) payload. Mass spectrometry studies of payload release suggested that other cysteine cathepsins can cleave the VC(S) linker. Also, ADCs with a nonprotease-cleavable enantiomer, the VC(R) isomer, mediated effective cell killing with a cysteine-VC(R)-MMAE catabolite generated by lysosomal catabolism. Based on these observations, we altered the payload to a pyrrolo[2,1-c][1,4]benzodiazepine dimer (PBD) conjugate that requires linker cleavage in order to bind its DNA target. Unlike the VC-MMAE ADCs, the VC(S)-PBD ADC is at least 20-fold more cytotoxic than the VC(R)-PBD ADC. Our findings reveal that the VC(S) linker has multiple paths to produce active catabolites and that antibody and intracellular targets are more critical to ADC efficacy. These results suggest that protease-cleavable linkers are unlikely to increase the therapeutic index of ADCs and that resistance based on linker processing is improbable. Cancer Res; 77(24); 7027-37. ©2017 AACR.


Analytical Chemistry | 2017

High-Resolution Accurate-Mass Mass Spectrometry Enabling In-Depth Characterization of in Vivo Biotransformations for Intact Antibody-Drug Conjugates

Jintang He; Dian Su; Carl Ng; Luna Liu; Shang-Fan Yu; Thomas H. Pillow; Geoffrey Del Rosario; Martine Darwish; Byoung-Chul Lee; Rachana Ohri; Hongxiang Zhou; Xueji Wang; Jiawei Lu; Surinder Kaur; Keyang Xu

Antibody-drug conjugates (ADCs) represent a promising class of therapeutics for the targeted delivery of highly potent cytotoxic drugs to tumor cells to improve bioactivity while minimizing side effects. ADCs are composed of both small and large molecules and therefore have complex molecular structures. In vivo biotransformations may further increase the complexity of ADCs, representing a unique challenge for bioanalytical assays. Quadrupole-time-of-flight mass spectrometry (Q-TOF MS) with electrospray ionization has been widely used for characterization of intact ADCs. However, interpretation of ADC biotransformations with small mass changes, for the intact molecule, remains a limitation due to the insufficient mass resolution and accuracy of Q-TOF MS. Here, we have investigated in vivo biotransformations of multiple site-specific THIOMAB antibody-drug conjugates (TDCs), in the intact form, using a high-resolution, accurate-mass (HR/AM) MS approach. Compared with conventional Q-TOF MS, HR/AM Orbitrap MS enabled more comprehensive identification of ADC biotransformations. It was particularly beneficial for characterizing ADC modifications with small mass changes such as partial drug loss and hydrolysis. This strategy has significantly enhanced our capability to elucidate ADC biotransformations and help understand ADC efficacy and safety in vivo.

Collaboration


Dive into the Thomas H. Pillow's collaboration.

Researchain Logo
Decentralizing Knowledge