Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine Zaunbrecher is active.

Publication


Featured researches published by Katherine Zaunbrecher.


Applied Physics Letters | 2014

Radiative and interfacial recombination in CdTe heterostructures

C. H. Swartz; M. Edirisooriya; E. G. LeBlanc; O. C. Noriega; P. A. R. D. Jayathilaka; O. S. Ogedengbe; B. L. Hancock; M. Holtz; Thomas H. Myers; Katherine Zaunbrecher

Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 1010 cm−2 and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10−10 cm3s−1. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.


Journal of Applied Physics | 2014

Charge-carrier transport and recombination in heteroepitaxial CdTe

Darius Kuciauskas; Stuart Farrell; Pat Dippo; John Moseley; Helio Moutinho; Jian V. Li; A. M. Allende Motz; Ana Kanevce; Katherine Zaunbrecher; Timothy A. Gessert; Dean H. Levi; Wyatt K. Metzger; Eric Colegrove; S. Sivananthan

We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm2 (Vs)−1 and diffusion coefficient D of 17 cm2 s−1. We find limiting recombination at the epitaxial film surface (surface recombination velocity Ssurface = (2.8 ± 0.3) × 105 cm s−1) and at the heteroepitaxial interface (interface recombination velocity Sinterface = (4.8 ± 0.5) × 105 cm s−1). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic d...


IEEE Journal of Photovoltaics | 2014

Correlating Multicrystalline Silicon Defect Types Using Photoluminescence, Defect-band Emission, and Lock-in Thermography Imaging Techniques

Steve Johnston; Harvey Guthrey; Fei Yan; Katherine Zaunbrecher; Mowafak Al-Jassim; Pati Rakotoniaina; Martin Kaes

A set of neighboring multicrystalline silicon wafers has been processed through different steps of solar cell manufacturing and then images were collected for characterization. The imaging techniques include band-to-band photoluminescence (PL), defect-band or subbandgap PL (subPL), and dark lock-in thermography (DLIT). Defect regions can be tracked from as-cut wafers throughout processing to the finished cells. The finished cells defect regions detected by band-to-band PL imaging correlate well to diffusion length and quantum efficiency maps. The most detrimental defect regions, type A, also correlate well to reverse-bias breakdown areas as shown in DLIT images. These type A defect regions appear dark in band-to-band PL images, and have subPL emissions. The subPL of type A defects shows strong correlations to poor cell performance and high reverse breakdown at the starting wafer steps (as-cut and textured), but the subPL becomes relatively weak after antireflection coating (ARC) and on the finished cell. Type B defects are regions that have lower defect density but still show detrimental cell performance. After ARC, type B defects emit more intense subPL than type A regions; consequently, type B subPL also shows better correlation to cell performance at the starting wafer steps rather than at the ARC process step and in the finished cell.


Applied Physics Letters | 2016

Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

Katherine Zaunbrecher; Darius Kuciauskas; C. H. Swartz; Pat Dippo; M. Edirisooriya; O. S. Ogedengbe; Sandeep Sohal; B. L. Hancock; E. G. LeBlanc; P. A. R. D. Jayathilaka; Teresa M. Barnes; Thomas H. Myers

Heterostructures with CdTe and CdTe1-xSex (x ∼ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombinati...


Journal of Vacuum Science and Technology | 2012

Correlations of Cu(In, Ga)Se2 imaging with device performance, defects, and microstructural properties

Steve Johnston; Thomas Unold; Ingrid Repins; Ana Kanevce; Katherine Zaunbrecher; Fei Yan; Jian V. Li; P. Dippo; R. Sundaramoorthy; Kim M. Jones; Bobby To

Camera imaging techniques have been used for the characterization of Cu(In,Ga)Se2 (CIGS) solar cells. Photoluminescence (PL) imaging shows brightness variations after the deposition of the CIGS layer that persist through CdS deposition and subsequent processing steps to finish the devices. PL and electroluminescence imaging on finished cells show a correlation to the devices’ corresponding efficiency and open-circuit voltage (VOC), and dark defect-related spots correspond to bright spots on images from illuminated lock-in thermography (LIT) and forward-bias dark LIT. These image-detected defect areas are weak diodes and shunts. Imaging provides locations of defects detrimental to solar cell performance. Some of these defects are analyzed in more detail by scanning electron microscopy using cross-sectional views.


IEEE Journal of Photovoltaics | 2014

Simultaneous Measurement of Minority-Carrier Lifetime in Single-Crystal CdTe Using Three Transient Decay Techniques

Steve Johnston; Katherine Zaunbrecher; R. K. Ahrenkiel; Darius Kuciauskas; David S. Albin; Wyatt K. Metzger

Minority-carrier lifetimes have simultaneously been measured on a single-crystal CdTe sample using three transient decay techniques. These measurements are microwave-reflection photoconductive decay (μ-PCD), time-resolved photoluminescence (TRPL), and transient free-carrier absorption (TFCA). The sample is a 0.8-mm-thick single-crystal CdTe sample from JX Nippon Mining & Metals USA, Inc., which is nominally undoped but has a hole concentration of about 2 - 3 × 1014 cm-3. Excess carriers are generated using a Nd:YAG laser with 5-ns pulses, and lifetimes are measured at room temperature. Using 532-nm excitation, the decay curves show an initial short-lifetime component, as carriers are generated near the unpassivated front surface. While TRPL shows a short lifetime of ~7 ns, both μ-PCD and TFCA have relatively long single-exponential decays after the initial 100 ns response. These decay times, which are more dominated by the bulk lifetime after the initial surface recombination, are 190 ns for both μ-PCD and TFCA. Simultaneous measurements using twophoton (1064 nm) excitation show bulk-dominated recombination for all three techniques. Lifetimes for both μ-PCD and TFCA are 270 ns, while the TRPL lifetime, which still shows some surfacelimited initial decay, is 160 ns.


photovoltaic specialists conference | 2012

Comparison of photoluminescence imaging on starting multi-crystalline silicon wafers to finished cell performance

Steve Johnston; Fei Yan; David Dorn; Katherine Zaunbrecher; Mowafak Al-Jassim; Omar Sidelkheir; Kamel Ounadjela

Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect band images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200°-400°C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.


Applied Physics Letters | 2015

Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

Wan-Jian Yin; Ji-Hui Yang; Katherine Zaunbrecher; T.A. Gessert; Teresa M. Barnes; Yanfa Yan; Su-Huai Wei

The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.


photovoltaic specialists conference | 2011

Non-uniformities in thin-film cadmium telluride solar cells using electroluminescence and photoluminescence

Katherine Zaunbrecher; Steve Johnston; Fei Yan; James R. Sites

It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, inline tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.


Journal of Applied Physics | 2016

Factors influencing photoluminescence and photocarrier lifetime in CdSeTe/CdMgTe double heterostructures

C. H. Swartz; Katherine Zaunbrecher; Sandeep Sohal; E. G. LeBlanc; M. Edirisooriya; O. S. Ogedengbe; J. E. Petersen; P. A. R. D. Jayathilaka; Thomas H. Myers; M. Holtz; Teresa M. Barnes

CdSeTe/CdMgTe double heterostructures were produced with both n-type and unintentionally doped absorber layers. Measurements of the dependence of photoluminescence intensity on excitation intensity were carried out, as well as measurements of time-resolved photoluminescence decay after an excitation pulse. It was found that decay times under very low photon injection conditions are dominated by a non-radiative Shockley-Read-Hall process described using a recombination center with an asymmetric capture cross section, where the cross section for holes is larger than that for electrons. As a result of the asymmetry, the center effectively extends photoluminescence decay by a hole trapping phenomenon. A reduction in electron capture cross section appeared at doping densities over 1016cm−3. An analysis of the excitation intensity dependence of room temperature photoluminescence revealed a strong relationship with doping concentration. This allows estimates of the carrier concentration to be made through a non-...

Collaboration


Dive into the Katherine Zaunbrecher's collaboration.

Top Co-Authors

Avatar

Steve Johnston

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fei Yan

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mowafak Al-Jassim

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa M. Barnes

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge