Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen C. Day is active.

Publication


Featured researches published by Kathleen C. Day.


Journal of Applied Physics | 2007

Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging

Ashish Agarwal; Sheng-Wen Huang; Matthew O'Donnell; Kathleen C. Day; M. Day; Nicholas A. Kotov; Shai Ashkenazi

A targeted gold nanoparticle has been developed as a contrast agent for photoacoustic medical imaging. We have studied cancer cell targeting by antibody conjugated gold nanorods for high contrast photoacoustic imaging. By changing the aspect ratio of the elongated “rod” shape of the gold nanoparticle, its plasmon peak absorption wavelength can be tuned to the near IR (700–900nm) for an increased penetration depth into biological tissue. Effective cell targeting and sensitive photoacoustic detection of a single layer of cells are demonstrated. Combining ultrasound with contrast agent based photoacoustic imaging is proposed as a visual tool to compound molecular and structural information for early stage prostate cancer detection.


Cancer Research | 2012

HER2 Drives Luminal Breast Cancer Stem Cells in the Absence of HER2 Amplification: Implications for Efficacy of Adjuvant Trastuzumab

Suthinee Ithimakin; Kathleen C. Day; Fayaz Malik; Qin Zen; Scott J. Dawsey; Tom Bersano-Begey; Ahmed A. Quraishi; Kathleen Woods Ignatoski; Stephanie Daignault; April Davis; Christopher L. Hall; Nallasivam Palanisamy; Amber Heath; Nader Tawakkol; Tahra Luther; Shawn G. Clouthier; Whitney A. Chadwick; Mark L. Day; Celina G. Kleer; Dafydd G. Thomas; Daniel F. Hayes; Hasan Korkaya; Max S. Wicha

Although current breast cancer treatment guidelines limit the use of HER2-blocking agents to tumors with HER2 gene amplification, recent retrospective analyses suggest that a wider group of patients may benefit from this therapy. Using breast cancer cell lines, mouse xenograft models and matched human primary and metastatic tissues, we show that HER2 is selectively expressed in and regulates self-renewal of the cancer stem cell (CSC) population in estrogen receptor-positive (ER(+)), HER2(-) luminal breast cancers. Although trastuzumab had no effects on the growth of established luminal breast cancer mouse xenografts, administration after tumor inoculation blocked subsequent tumor growth. HER2 expression is increased in luminal tumors grown in mouse bone xenografts, as well as in bone metastases from patients with breast cancer as compared with matched primary tumors. Furthermore, this increase in HER2 protein expression was not due to gene amplification but rather was mediated by receptor activator of NF-κB (RANK)-ligand in the bone microenvironment. These studies suggest that the clinical efficacy of adjuvant trastuzumab may relate to the ability of this agent to target the CSC population in a process that does not require HER2 gene amplification. Furthermore, these studies support a CSC model in which maximal clinical benefit is achieved when CSC targeting agents are administered in the adjuvant setting. Cancer Res; 73(5); 1635-46. ©2012 AACR.


Journal of Biomedical Optics | 2007

Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging.

Gwangseong Kim; Sheng Wen Huang; Kathleen C. Day; Matthew O'Donnell; Rodney R. Agayan; Mark A. Day; Raoul Kopelman; Shai Ashkenazi

Nanoparticles 100 nm in diameter containing indocyanine green (ICG) have been developed as a contrast agent for photoacoustic (PA) imaging based on (photonic explorers for biomedical use by biologically localized embedding PEBBLE) technology using organically modified silicate (ormosil) as a matrix. ICG is an FDA-approved dye with strong optical absorption in the near-infrared (NIR) region, where light can penetrate deepest into biological tissue. A photoacoustic imaging system was used to study image contrast as a function of PEBBLE concentration in phantom objects. ICG-embedded ormosil PEBBLEs showed improved stability in aqueous solution compared with free ICG dye. The particles were conjugated with HER-2 antibody for breast cancer and prostate cancer cell targeting. Initial in vitro characterization shows high contrast and high efficiency for binding to prostate cancer cells. ICG can also be used as a photosensitizer (generating toxic oxygen by illumination) for photodynamic therapy. We have measured the photosensitization capability of ICG-embedded ormosil nanoparticles. This feature can be utilized to combine detection and therapeutic functions in a single agent.


Journal of Biological Chemistry | 2008

The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation

Abdo J. Najy; Kathleen C. Day; Mark L. Day

The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.


Journal of Biological Chemistry | 1997

Cell Anchorage Regulates Apoptosis through the Retinoblastoma Tumor Suppressor/E2F Pathway

Mark L. Day; Rosalinda G. Foster; Kathleen C. Day; Xin Zhao; Peter A. Humphrey; Paul E. Swanson; Antonio A. Postigo; Steven H. Zhang; Douglas C. Dean

Epithelial cells are dependent upon adhesion to extracellular matrix for survival. We show that loss of β1 integrin receptor contact with extracellular matrix signals the inhibition of G1 cyclin-dependent kinase activity. This loss of cyclin-dependent kinase activity leads to accumulation of the hypophosphorylated (active) form of the retinoblastoma tumor suppressor protein (Rb). We present evidence that in epithelial cells deprived of matrix contact, the growth suppression signal elicited by hypophosphorylated Rb opposes stimulatory signals from serum growth factors, leading to a cell cycle conflict that triggers apoptosis. This apoptotic pathway is modulated by Bcl-2 through a novel mechanism that regulates Rb phosphorylation. We present evidence that the Rb-dependent apoptotic pathway functions in vivo in the apoptosis of the prostate glandular epithelium following castration.


Cancer Research | 2008

ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction.

Abdo J. Najy; Kathleen C. Day; Mark L. Day

Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.


Cancer | 2014

A randomized phase 2 trial of gemcitabine/cisplatin with or without cetuximab in patients with advanced urothelial carcinoma

Maha Hussain; Stephanie Daignault; Neeraj Agarwal; Petros Grivas; Arlene O. Siefker-Radtke; Igor Puzanov; Gary R. MacVicar; Ellis G. Levine; Sandy Srinivas; Przemyslaw Twardowski; Mario A. Eisenberger; David I. Quinn; Ulka N. Vaishampayan; Evan Y. Yu; Scott J. Dawsey; Kathleen C. Day; Mark L. Day; Mahmoud M. Al-Hawary; David C. Smith

Epidermal growth factor receptor overexpression is associated with poor outcomes in urothelial carcinoma (UC). Cetuximab (CTX) exhibited an antitumor effect in in vivo UC models. The efficacy of gemcitabine/cisplatin (GC) with or without CTX in patients with advanced UC was evaluated.


Cancer Research | 2017

HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone

Kathleen C. Day; Guadalupe Lorenzatti Hiles; Molly Kozminsky; Scott J. Dawsey; Alyssa Paul; Luke J. Broses; Rajal B. Shah; Lakshmi P. Kunja; Chris M. Hall; Nallasivam Palanisamy; Stephanie Daignault-Newton; Layla El-Sawy; Steven James Wilson; Andrew Chou; Kathleen Woods Ignatoski; Evan T. Keller; Dafydd G. Thomas; Sunitha Nagrath; Todd M. Morgan; Mark L. Day

Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74-85. ©2016 AACR.


Urology | 1999

Signaling network of paclitaxel-induced apoptosis in the LNCaP prostate cancer cell line

Ravat Panvichian; Kim Orth; Mary Josephine Pilat; Mark L. Day; Kathleen C. Day; Christina S.K. Yee; J. M. Kamradt; Kenneth J. Pienta

OBJECTIVES To attempt to identify the relationship of the key regulator molecules in paclitaxel-induced apoptosis using two metastatic cell lines: the human prostate carcinoma LNCaP line and the cervical carcinoma HeLa cell line. METHODS Both LNCaP and HeLa cells were continuously exposed to clinically achievable concentrations of paclitaxel and observed for activation of programmed cell death as measured by cytotoxic dose-response curves, poly(adenosine diphosphate-ribose) polymerase cleavage, bcl-2 phosphorylation, and the activation of caspase-7 (interleukin-1 beta converting enzyme (ICE)-LAP3). RESULTS Initially, we asked whether paclitaxel-induced bcl-2 phosphorylation is triggered by the spindle assembly checkpoint via an active cdc2 kinase-dependent pathway and whether phosphorylation of endogenous bcl-2 is the signal that activates cell death machinery. Paclitaxel-induced G2/M cell cycle arrest correlated with cdc2 kinase activity and bcl-2 phosphorylation. Olomoucin, a specific inhibitor of cyclin-dependent kinases, inhibited bcl-2 phosphorylation. On the basis of these studies, we then investigated whether bcl-2 was phosphorylated in a cell cycle-dependent fashion. Analysis of synchronized HeLa cells demonstrated that endogenous bcl-2 is phosphorylated in a G2/M cell cycle-dependent manner without apoptosis. CONCLUSIONS Our results indicate that the events associated with paclitaxel-induced cytotoxicity are connected to each other and represent the signaling network of paclitaxel-induced mitotic arrest and cell death. In addition, we confirmed that the death-decision of paclitaxel-induced apoptosis is not mediated by bcl-2 phosphorylation and believe that this decision may be mediated by the activated spindle assembly checkpoint.


Molecular Medicine | 2013

Evaluation of the antitumor activity of dacomitinib in models of human bladder cancer

Petros Grivas; Kathleen C. Day; Andreas Karatsinides; Alyssa Paul; Nazia Shakir; Iya Owainati; Monica Liebert; Lakshmi P. Kunju; Dafydd G. Thomas; Maha Hussain; Mark L. Day

Members of the human epidermal growth factor receptor (HER) family play a significant role in bladder cancer progression and may underlie the development of chemotherapy resistance. Dacomitinib is an irreversible tyrosine kinase inhibitor with structural specificity for the catalytic domains of epidermal growth factor receptor (EGFR), HER2 and HER4 that has exhibited vigorous efficacy against other solid tumors. We evaluated the antitumor activity of dacomitinib in human bladder cancer cell lines expressing varying levels of HER family receptors. These cell lines also were established as bladder cancer xenografts in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice to assess dacomitinib activity in vivo. Significant cytotoxic and cytostatic effects were noted in cells expressing elevated levels of the dacomitinib target receptors with apoptosis and cell cycle arrest being the predominant mechanisms of antitumor activity Cells expressing lower levels of HER receptors were much less sensitive to dacomitinib. Interestingly, dacomitinib was more active than either trastuzumab or cetuximab in vitro, and exhibited increased growth inhibition of bladder tumor xenografts compared with lapatinib. Pharmacodynamic effects of dacomitinib included decreased E-cadherin (E-cad) expression, reduction of EGFR and extracellular signal-regulated kinase (ERK) phosphorylation and reduced mitotic count. Dacomitinib also inhibited tumor growth in a chemotherapy-resistant xenograft and, when combined with chemotherapy in a sensitive xenograft, exhibited superior antitumor effects compared with individual treatments. Evaluation in xenograft-bearing mice revealed that this combination was broadly feasible and well tolerated. In conclusion, dacomitinib exhibited pronounced activity both as a single agent and when combined with chemotherapy in human bladder cancer models. Further investigation of dacomitinib in the preclinical and clinical trial settings is being pursued.

Collaboration


Dive into the Kathleen C. Day's collaboration.

Top Co-Authors

Avatar

Mark L. Day

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maha Hussain

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyssa Paul

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge