Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen K.S. Hui is active.

Publication


Featured researches published by Kathleen K.S. Hui.


Human Brain Mapping | 2000

Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects.

Kathleen K.S. Hui; Jing Liu; Nikos Makris; Randy L. Gollub; Anthony W. Chen; Christopher I. Moore; David N. Kennedy; Bruce R. Rosen; Kenneth K. Kwong

Acupuncture, an ancient therapeutic technique, is emerging as an important modality of complementary medicine in the United States. The use and efficacy of acupuncture treatment are not yet widely accepted in Western scientific and medical communities. Demonstration of regionally specific, quantifiable acupuncture effects on relevant structures of the human brain would facilitate acceptance and integration of this therapeutic modality into the practice of modern medicine. Research with animal models of acupuncture indicates that many of the beneficial effects may be mediated at the subcortical level in the brain. We used functional magnetic resonance imaging (fMRI) to investigate the effects of acupuncture in normal subjects and to provide a foundation for future studies on mechanisms of acupuncture action in therapeutic interventions. Acupuncture needle manipulation was performed at Large Intestine 4 (LI 4, Hegu) on the hand in 13 subjects [Stux, 1997]. Needle manipulation on either hand produced prominent decreases of fMRI signals in the nucleus accumbens, amygdala, hippocampus, parahippocampus, hypothalamus, ventral tegmental area, anterior cingulate gyrus (BA 24), caudate, putamen, temporal pole, and insula in all 11 subjects who experienced acupuncture sensation. In marked contrast, signal increases were observed primarily in the somatosensory cortex. The two subjects who experienced pain instead of acupuncture sensation exhibited signal increases instead of decreases in the anterior cingulate gyrus (BA 24), caudate, putamen, anterior thalamus, and posterior insula. Superficial tactile stimulation to the same area elicited signal increases in the somatosensory cortex as expected, but no signal decreases in the deep structures. These preliminary results suggest that acupuncture needle manipulation modulates the activity of the limbic system and subcortical structures. We hypothesize that modulation of subcortical structures may be an important mechanism by which acupuncture exerts its complex multisystem effects. Hum Brain Mapp 9:13–25, 2000.


NeuroImage | 2005

The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI

Kathleen K.S. Hui; Jing Liu; Ovidiu Marina; Vitaly Napadow; Christian Haselgrove; Kenneth K. Kwong; David N. Kennedy; Nikos Makris

Clinical and experimental data indicate that most acupuncture clinical results are mediated by the central nervous system, but the specific effects of acupuncture on the human brain remain unclear. Even less is known about its effects on the cerebellum. This fMRI study demonstrated that manual acupuncture at ST 36 (Stomach 36, Zusanli), a main acupoint on the leg, modulated neural activity at multiple levels of the cerebro-cerebellar and limbic systems. The pattern of hemodynamic response depended on the psychophysical response to needle manipulation. Acupuncture stimulation typically elicited a composite of sensations termed deqi that is related to clinical efficacy according to traditional Chinese medicine. The limbic and paralimbic structures of cortical and subcortical regions in the telencephalon, diencephalon, brainstem and cerebellum demonstrated a concerted attenuation of signal intensity when the subjects experienced deqi. When deqi was mixed with sharp pain, the hemodynamic response was mixed, showing a predominance of signal increases instead. Tactile stimulation as control also elicited a predominance of signal increase in a subset of these regions. The study provides preliminary evidence for an integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 that correlates with the psychophysical response.


Human Brain Mapping | 2005

Effects of Electroacupuncture versus Manual Acupuncture on the Human Brain as Measured by fMRI

Vitaly Napadow; Nikos Makris; Jing Liu; Norman W. Kettner; Kenneth K. Kwong; Kathleen K.S. Hui

The goal of this functional magnetic resonance imaging (fMRI) study was to compare the central effects of electroacupuncture at different frequencies with traditional Chinese manual acupuncture. Although not as time‐tested as manual acupuncture, electroacupuncture does have the advantage of setting stimulation frequency and intensity objectively and quantifiably. Manual acupuncture, electroacupuncture at 2 Hz and 100 Hz, and tactile control stimulation were carried out at acupoint ST‐36. Overall, electroacupuncture (particularly at low frequency) produced more widespread fMRI signal increase than manual acupuncture did, and all acupuncture stimulations produced more widespread responses than did our placebo‐like tactile control stimulation. Acupuncture produced hemodynamic signal increase in the anterior insula, and decrease in limbic and paralimbic structures including the amygdala, anterior hippocampus, and the cortices of the subgenual and retrosplenial cingulate, ventromedial prefrontal cortex, frontal, and temporal poles, results not seen for tactile control stimulation. Only electroacupuncture produced significant signal increase in the anterior middle cingulate cortex, whereas 2‐Hz electroacupuncture produced signal increase in the pontine raphe area. All forms of stimulation (acupuncture and control) produced signal increase in SII. These findings support a hypothesis that the limbic system is central to acupuncture effect regardless of specific acupuncture modality, although some differences do exist in the underlying neurobiologic mechanisms for these modalities, and may aid in optimizing their future usage in clinical applications. Hum. Brain Mapping 24:193–205, 2005.


Journal of Alternative and Complementary Medicine | 2007

Acupuncture De Qi, from Qualitative History to Quantitative Measurement

Jian Kong; Randy L. Gollub; Tao Huang; Ginger Polich; Vitaly Napadow; Kathleen K.S. Hui; Mark G. Vangel; Bruce R. Rosen; Ted J. Kaptchuk

De qi is an important traditional acupuncture term used to describe the connection between acupuncture needles and the energy pathways of the body. The concept is discussed in the earliest Chinese medical texts, but details of de qi phenomenon, which may include the acupuncturists and/or the patients experiences, were only fully described in the recent hundred years. In this paper, we will trace de qi historically as an evolving concept, and review the literature assessing acupuncture needle sensations, and the relationship between acupuncture-induced de qi and therapeutic effect. Thereafter, we will introduce the MGH Acupuncture Sensation Scale (MASS), a rubric designed to measure sensations evoked by acupuncture stimulation as perceived by the patient alone, and discuss some alternative statistical methods for analyzing the results of this questionnaire. We believe widespread use of this scale, or others like it, and investigations of the correlations between de qi and therapeutic effect will lead to greater precision in acupuncture research and enhance our understanding of acupuncture treatment.


Pain | 2007

Hypothalamus and amygdala response to acupuncture stimuli in Carpal Tunnel Syndrome.

Vitaly Napadow; Norman W. Kettner; Jing Liu; Ming Li; Kenneth K. Kwong; Mark G. Vangel; N. Makris; Joseph Audette; Kathleen K.S. Hui

Abstract Brain processing of acupuncture stimuli in chronic neuropathic pain patients may underlie its beneficial effects. We used fMRI to evaluate verum and sham acupuncture stimulation at acupoint LI‐4 in Carpal Tunnel Syndrome (CTS) patients and healthy controls (HC). CTS patients were retested after 5 weeks of acupuncture therapy. Thus, we investigated both the short‐term brain response to acupuncture stimulation, as well as the influence of longer‐term acupuncture therapy effects on this short‐term response. CTS patients responded to verum acupuncture with greater activation in the hypothalamus and deactivation in the amygdala as compared to HC, controlling for the non‐specific effects of sham acupuncture. A similar difference was found between CTS patients at baseline and after acupuncture therapy. For baseline CTS patients responding to verum acupuncture, functional connectivity was found between the hypothalamus and amygdala – the less deactivation in the amygdala, the greater the activation in the hypothalamus, and vice versa. Furthermore, hypothalamic response correlated positively with the degree of maladaptive cortical plasticity in CTS patients (inter‐digit separation distance). This is the first evidence suggesting that chronic pain patients respond to acupuncture differently than HC, through a coordinated limbic network including the hypothalamus and amygdala.


Autonomic Neuroscience: Basic and Clinical | 2010

Acupuncture, the Limbic System, and the Anticorrelated Networks of the Brain

Kathleen K.S. Hui; Ovidiu Marina; Jing Liu; Bruce R. Rosen; Kenneth K. Kwong

The study of the mechanism of acupuncture action was revolutionized by the use of functional magnetic resonance imaging (fMRI). Over the past decade, our fMRI studies of healthy subjects have contributed substantially to elucidating the central effect of acupuncture on the human brain. These studies have shown that acupuncture stimulation, when associated with sensations comprising deqi, evokes deactivation of a limbic-paralimbic-neocortical network, which encompasses the limbic system, as well as activation of somatosensory brain regions. These networks closely match the default mode network and the anti-correlated task-positive network described in the literature. We have also shown that the effect of acupuncture on the brain is integrated at multiple levels, down to the brainstem and cerebellum. Our studies support the hypothesis that the effect of acupuncture on the brain goes beyond the effect of attention on the default mode network or the somatosensory stimulation of acupuncture needling. The amygdala and hypothalamus, in particular, show decreased activation during acupuncture stimulation that is not commonly associated with default mode network activity. At the same time, our research shows that acupuncture stimulation needs to be done carefully, limiting stimulation when the resulting sensations are very strong or when sharp pain is elicited. When acupuncture induced sharp pain, our studies show that the deactivation was attenuated or reversed in direction. Our results suggest that acupuncture mobilizes the functionally anti-correlated networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response. In this work we also discuss multiple avenues of future research, including the role of neurotransmitters, the effect of different acupuncture techniques, and the potential clinical application of our research findings to disease states including chronic pain, major depression, schizophrenia, autism, and Alzheimers disease.


Brain Research | 2009

Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects

Kathleen K.S. Hui; Ovidiu Marina; Joshua D. Claunch; Erika E. Nixon; Jiliang Fang; Jing Liu; Ming Li; Vitaly Napadow; Mark G. Vangel; Nikos Makris; Suk-Tak Chan; Kenneth K. Kwong; Bruce R. Rosen

Previous work has shown that acupuncture stimulation evokes deactivation of a limbic-paralimbic-neocortical network (LPNN) as well as activation of somatosensory brain regions. This study explores the activity and functional connectivity of these regions during acupuncture vs. tactile stimulation and vs. acupuncture associated with inadvertent sharp pain. Acupuncture during 201 scans and tactile stimulation during 74 scans for comparison at acupoints LI4, ST36 and LV3 was monitored with fMRI and psychophysical response in 48 healthy subjects. Clusters of deactivated regions in the medial prefrontal, medial parietal and medial temporal lobes as well as activated regions in the sensorimotor and a few paralimbic structures can be identified during acupuncture by general linear model analysis and seed-based cross correlation analysis. Importantly, these clusters showed virtual identity with the default mode network and the anti-correlated task-positive network in response to stimulation. In addition, the amygdala and hypothalamus, structures not routinely reported in the default mode literature, were frequently involved in acupuncture. When acupuncture induced sharp pain, the deactivation was attenuated or became activated instead. Tactile stimulation induced greater activation of the somatosensory regions but less extensive deactivation of the LPNN. These results indicate that the deactivation of the LPNN during acupuncture cannot be completely explained by the demand of attention that is commonly proposed in the default mode literature. Our results suggest that acupuncture mobilizes the anti-correlated functional networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response.


Human Brain Mapping | 2007

Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture.

Vitaly Napadow; Jing Liu; Ming Li; Norman W. Kettner; Angela Ryan; Kenneth K. Kwong; Kathleen K.S. Hui; Joseph Audette

Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first through fourth digits. We hypothesize that aberrant afferent input from CTS will lead to maladaptive cortical plasticity, which may be corrected by appropriate therapy. Functional MRI (fMRI) scanning and clinical testing was performed on CTS patients at baseline and after 5 weeks of acupuncture treatment. As a control, healthy adults were also tested 5 weeks apart. During fMRI, sensory stimulation was performed for median nerve innervated digit 2 (D2) and digit 3 (D3), and ulnar nerve innervated digit 5 (D5). Surface‐based and region of interest (ROI)‐based analyses demonstrated that while the extent of fMRI activity in contralateral Brodmann Area 1 (BA 1) and BA 4 was increased in CTS compared to healthy adults, after acupuncture there was a significant decrease in contralateral BA 1 (P < 0.005) and BA 4 (P < 0.05) activity during D3 sensory stimulation. Healthy adults demonstrated no significant test–retest differences for any digit tested. While D3/D2 separation was contracted or blurred in CTS patients compared to healthy adults, the D2 SI representation shifted laterally after acupuncture treatment, leading to increased D3/D2 separation. Increasing D3/D2 separation correlated with decreasing paresthesias in CTS patients (P < 0.05). As CTS‐induced paresthesias constitute diffuse, synchronized, multidigit symptomatology, our results for maladaptive change and correction are consistent with Hebbian plasticity mechanisms. Acupuncture, a somatosensory conditioning stimulus, shows promise in inducing beneficial cortical plasticity manifested by more focused digital representations. Hum Brain Mapp, 2007.


NeuroImage | 2006

Somatosensory cortical plasticity in carpal tunnel syndrome—a cross-sectional fMRI evaluation

Vitaly Napadow; Norman W. Kettner; Angela Ryan; Kenneth K. Kwong; Joseph Audette; Kathleen K.S. Hui

Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve characterized by paresthesias and pain in the first, second, and third digits. We hypothesize that aberrant afferent input in CTS will lead to cortical plasticity. Functional MRI (fMRI) and neurophysiological testing were performed on CTS patients and healthy adults. Median nerve innervated digit 2 (D2), and digit 3 (D3) and ulnar nerve innervated digit 5 (D5) were stimulated during fMRI. Surface-based and ROI-based analyses consistently demonstrated more extensive and stronger contralateral sensorimotor cortical representations of D2 and D3 for CTS patients as compared to healthy adults (P < 0.05). Differences were less profound for D5. Moreover, D3 fMRI activation in both the contralateral SI and motor cortex correlated positively with the D3 sensory conduction latency. Analysis of somatotopy suggested that contralateral SI representations for D2 and D3 were less separated for CTS patients (3.8 +/- 1.0 mm) than for healthy adults (7.5 +/- 1.2 mm). Furthermore, the D3/D2 separation distance correlated negatively with D2 sensory conduction latency-the greater the latency, the closer the D2/D3 cortical representations (r = -0.79, P < 0.05). Coupled with a greater extent of SI representation for these CTS affected digits, the closer cortical representations can be interpreted as a blurred somatotopic arrangement for CTS affected digits. These findings provide further evidence that CTS is not manifest in the periphery alone. Our results are consistent with Hebbian plasticity mechanisms, as our cohort of CTS patients had predominant paresthesias, which produce more temporally coherent afferent signaling from affected digits.


NeuroImage | 2009

Time-Variant fMRI Activity in the Brainstem and Higher Structures in Response to Acupuncture

Vitaly Napadow; Rupali P. Dhond; Kyungmo Park; Jieun Kim; Nikos Makris; Kenneth K. Kwong; Richard E. Harris; Patrick L. Purdon; Norman W. Kettner; Kathleen K.S. Hui

Acupuncture modulation of activity in the human brainstem is not well known. This structure is plagued by physiological artifact in neuroimaging experiments. In addition, most studies have used short (<15 min) block designs, which miss delayed responses following longer duration stimulation. We used brainstem-focused cardiac-gated fMRI and evaluated time-variant brain response to longer duration (>30 min) stimulation with verum (VA, electro-stimulation at acupoint ST-36) or sham point (SPA, non-acupoint electro-stimulation) acupuncture. Our results provide evidence that acupuncture modulates brainstem nuclei important to endogenous monoaminergic and opioidergic systems. Specifically, VA modulated activity in the substantia nigra (SN), nucleus raphe magnus, locus ceruleus, nucleus cuneiformis, and periaqueductal gray (PAG). Activation in the ventrolateral PAG was greater for VA compared to SPA. Linearly decreasing time-variant activation, suggesting classical habituation, was found in response to both VA and SPA in sensorimotor (SII, posterior insula, premotor cortex) brain regions. However, VA also produced linearly time-variant activity in limbic regions (amygdala, hippocampus, and SN), which was bimodal and not likely habituation--consisting of activation in early blocks, and deactivation by the end of the run. Thus, acupuncture induces different brain response early, compared to 20-30 min after stimulation. We attribute the fMRI differences between VA and SPA to more varied and stronger psychophysical response induced by VA. Our study demonstrates that acupuncture modulation of brainstem structures can be studied non-invasively in humans, allowing for comparison to animal studies. Our protocol also demonstrates a fMRI approach to study habituation and other time-variant phenomena over longer time durations.

Collaboration


Dive into the Kathleen K.S. Hui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman W. Kettner

Logan College of Chiropractic

View shared research outputs
Researchain Logo
Decentralizing Knowledge