Kathleen K. Smith
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathleen K. Smith.
Evolution | 1997
Kathleen K. Smith
The sequence of differentiation of major elements of the skeletal, muscular and nervous systems of the head is examined in developmental series of five eutherian (placental) and four metatherian (marsupial) mammals. The analysis identifies the elements that are conserved across the Theria, those that are unique to the Metatheria and to the Eutheria, and those that are variable. It is shown that although there are slight shifts in the sequence of development within the somatic tissues of the head, the primary difference between marsupial and placental mammals involves the timing and rate of differentiation of structures of the central nervous system (CNS) relative to a specific subset of structures of the cranial skeleton and musculature. In eutherians, CNS morphogenesis is well underway before the somatic tissues of the head begin differentiation. In metatherians, CNS development is delayed considerably and certain elements of the skeletal and muscular systems are advanced. It is concluded that the developmental differences between marsupial and placental mammals are best explained by the interaction of several processes including neurogenesis as a potential rate‐limiting step, the developmental requirements of somatic elements, and the extremely short period of organogenesis of marsupial mammals. Several other issues, including the way that these data may be applied to determine the primitive therian developmental condition, and the use of comparative developmental data to address basic questions on morphogenetic processes, are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Samantha A. Price; Samantha S. B. Hopkins; Kathleen K. Smith; V. Louise Roth
Mammals are characterized by the complex adaptations of their dentition, which are an indication that diet has played a critical role in their evolutionary history. Although much attention has focused on diet and the adaptations of specific taxa, the role of diet in large-scale diversification patterns remains unresolved. Contradictory hypotheses have been proposed, making prediction of the expected relationship difficult. We show that net diversification rate (the cumulative effect of speciation and extinction), differs significantly among living mammals, depending upon trophic strategy. Herbivores diversify fastest, carnivores are intermediate, and omnivores are slowest. The tempo of transitions between the trophic strategies is also highly biased: the fastest rates occur into omnivory from herbivory and carnivory and the lowest transition rates are between herbivory and carnivory. Extant herbivore and carnivore diversity arose primarily through diversification within lineages, whereas omnivore diversity evolved by transitions into the strategy. The ability to specialize and subdivide the trophic niche allowed herbivores and carnivores to evolve greater diversity than omnivores.
Journal of Morphology | 1982
Kathleen K. Smith
The function of major features of the skull of Varanus exanthematicus during feeding was examined using cineradiography and electromyography. During the initial stages of feeding, Varanus grabs and orients a prey item in the mouth with no mastication, tearing of the prey, or killing bite. Ingestion is through a highly stereotyped movement, inertial feeding. The tongue plays no role in food transport. Once the prey is in the pharyngeal region, the hyoid apparatus squeezes the prey into the esophagus and stomach. Activity of jaw adducting muscles during prey orientation and inertial feeding is strikingly different. In prey orientation, the adductor musculature is active over long periods, and intermuscular differentiation and unilateral activity are common. During these phases the musculature is producing force against the resistance of the prey item held between the teeth. In inertial feeding, the jaw musculature functions to close the jaws rapidly against little resistance. A consistent pattern of intramuscular differentiation is present, with some portions of the musculature being active during both jaw opening and closing. Activity of the Mm. adductor mandibulae externus and pterygoideus is indistinguishable. Neither meso‐ nor metakinetic movement was observed during inertial feeding; resolution of interacranial movement was less certain during power phases. The quadrate moved during jaw opening and closing in inertial feeding. However, its movement was not linked with that of the palatomaxillary segment. These data are discussed in three contexts: cranial kinesis, intramuscular differentiation, and the mechanics of whole muscles.
The American Naturalist | 1998
Charles L. Nunn; Kathleen K. Smith
Heterochrony is most often thought to involve changes in the rate of development or maturation (rate changes). However, heterochrony can also involve changes in the timing of specific developmental events relative to other events (sequence changes). Sequence changes have received much less attention than have changes in developmental rates, in part because few methods exist for comparing developmental sequences. Here, we present two methods to statistically evaluate developmental sequence changes. First, Kendalls coefficient of concordance (W) is used to quantify overall similarity of developmental sequences in two or more groups of organisms, and second, ANOVA is used to identify the individual events that differ most in their relative developmental timing. Computer simulation is used to control for the nonindependence of species. We examine the sequence of developmental events in the craniofacial region of marsupial and placental mammals. We conclude that the most important differences in development in the two clades relate to the relative sequence of development of the central nervous system and somatic elements of the craniofacial region. The rationale behind the methods and their limitations are discussed, and the results from this study are compared with a previous analysis.
Developmental Dynamics | 2006
Kathleen K. Smith
Biologists have long studied the evolutionary consequences of the differences in reproductive and life history strategies of marsupial and eutherian mammals. Over the past few decades, the impact of these strategies on the development of the marsupial embryo and neonate has received attention. In this review, the differences in development in the craniofacial region in marsupial and eutherian mammals will be discussed. The review will highlight differences at the organogenic and cellular levels, and discuss hypotheses for shifts in the expression of important regulatory genes. The major difference in the organogenic period is a whole‐scale shift in the relative timing of central nervous system structures, in particular those of the forebrain, which are delayed in marsupials, relative to the structures of the oral–facial apparatus. Correlated with the delay in development of nervous system structures, the ossification of the bones of the neurocranium are delayed, while those of the face are accelerated. This study will also review work showing that the neural crest, which provides much of the cellular material to the facial skeleton and may also carry important patterning information, is notably accelerated in its development in marsupials. Potential consequences of these observations for hypotheses on constraint, evolutionary integration, and the existence of developmental modules is discussed. Finally, the implications of these results for hypotheses on the genetic modulation of craniofacial patterning are presented. Developmental Dynamics 235:1181–1193, 2006.
Brain Behavior and Evolution | 1994
Kathleen K. Smith
Hypotheses that neuromotor systems are conserved during evolution are examined. Focus is on the fundamental assumption underlying such hypotheses, that neuromotor patterns are homologous. The criteria for testing hypotheses of homology are briefly reviewed and applied to several cases in which neuromotor conservatism has been proposed. It is concluded that few studies of neuromotor conservatism are complete enough to convincingly corroborate a hypothesis of homology. Particular problems include an absence of specific definitions of the parameters designating the conserved neuromotor pattern and the lack of sufficiently broad and detailed phylogenetic tests. The hypothesis that terrestrially feeding vertebrates exhibit a conservative feeding program, which has acted as a constraint in evolution, receives particular attention and it is concluded that existing data do not support this hypothesis.
Development | 2007
Emily Clough; Woongjoon Moon; Shengxian Wang; Kathleen K. Smith; Tulle Hazelrigg
SET domain proteins are histone lysine methyltransferases (HMTs) that play essential roles in development. Here we show for the first time that histone methylation occurs in both the germ cells and somatic cells of the Drosophila ovary, and demonstrate in vivo that an HMT, the product of the eggless (egg) gene, is required for oogenesis. Egg is a SET domain protein that is similar to the human protein SETDB1 and its mouse ortholog ESET. These proteins are members of a small family of HMTs that contain bifurcated SET domains. Because depletion of SETDB1 in tissue culture cells is cell-lethal, and an ESET mutation causes very early periimplantation embryonic arrest, the role of SETDB1/ESET in development has proven difficult to address. We show that egg is required in the Drosophila ovary for trimethylation of histone H3 at its K9 residue. In females bearing an egg allele that deletes the SET domain, oogenesis arrests at early stages. This arrest is accompanied by reduced proliferation of somatic cells required for egg chamber formation, and by apoptosis in both germ and somatic cell populations. We propose that other closely related SET domain proteins may function similarly in gametogenesis in other species.
Journal of Anatomy | 2001
Kathleen K. Smith
Marsupial mammals have a distinctive reproductive strategy. The young are born after an exceptionally short period of organogenesis and are consequently extremely altricial. Yet because they must be functionally independent in an essentially embryonic condition, the marsupial neonate exhibits a unique suite of adaptations. In particular, certain bones of the facial region, most cranial musculature and a few additional structures are accelerated in their development. In contrast, central nervous system structures, especially the forebrain, are markedly premature at birth, resembling an embryonic d 11 or 12 mouse. This review examines the developmental processes that are modified to produce these evolutionary changes. The focus is on the early development of the neural plate, neural crest and facial region in the marsupial, Monodelphis domestica, compared with patterns reported for rodents. Neural crest begins differentiation and migration at the neural plate stage, which results in large accumulations of neural crest in the facial region at an early stage of development. The early accumulation of neural crest provides the material for the accelerated development of oral and facial structures. The first arch region is massive in the early embryo, and the development of the olfactory placode and frontonasal region is advanced relative to the forebrain region. The development of the forebrain is delayed in marsupials relative to the hindbrain or facial region. These observations illustrate how development may be modified to produce evolutionary changes that distinguish taxa. Further, they suggest that development is not necessarily highly conserved, but instead may be quite plastic.
BioEssays | 1998
Kathleen K. Smith; Richard A. Schneider
Many recent gene knockout experiments cause anatomical changes to the jaw region of mice that several investigators claim are evolutionary reversals. Here we evaluate these mutant phenotypes and the assertions of atavism. We argue that following the knockout of Hoxa-2, Dlx-2, MHox, Otx2, and RAR genes, ectopic cartilages arise as secondary consequences of disruptions in normal processes of cell specification, migration, or differentiation. These disruptions cause an excess of mesenchyme to accumulate in a region through which skeletal progenitor cells usually migrate, and at a site of condensation that is normally present in mammals but that is too small to chondrify. We find little evidence that these genes, when disrupted, cause a reversion to any primitive condition and although changes in their expression may have played a role in the evolution of the mammalian jaw, their function during morphogenesis is not sufficiently understood to confirm such hypotheses.
Paleobiology | 2005
Alexander F. H. van Nievelt; Kathleen K. Smith
Abstract Marsupial mammals are characterized by a pattern of dental replacement thought to be unique. The apparent primitive therian pattern is two functional generations of teeth at the incisor, canine, and premolar loci, and a series of molar teeth, which by definition are never replaced. In marsupials, the incisor, canine, and first and second premolar positions possess only a single functional generation. Recently this pattern of dental development has been hypothesized to be a synapomorphy of metatherians, and has been used to diagnose taxa in the fossil record. Further, the suppression of the first generation of teeth has been linked to the marsupial mode of reproduction, through the mechanical suppression of odontogenesis during the period of fixation of marsupials, and has been used to reconstruct the mode of reproduction of fossil organisms. Here we show that dental development occurs throughout the period of fixation; therefore, the hypothesis that odontogenesis is mechanically suppressed during this period is refuted. Further, we present comparative data on dental replacement in eutherians and demonstrate that suppression of tooth replacement is fairly common in diverse groups of placental mammals. We conclude that reproductive mode is neither a necessary nor a sufficient explanation for the loss of tooth replacement in marsupials. We explore possible alternative explanations for the loss of replacement in therians, but we argue that no single hypothesis is adequate to explain the full range of observed patterns.