Kathleen R. Noon
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathleen R. Noon.
Molecular Pharmacology | 2010
Narayan P. Sharma; Liang Dong; Chong Yuan; Kathleen R. Noon; William L. Smith
Prostaglandin endoperoxide H synthases (PGHS)-1 and -2, also called cyclooxygenases, convert arachidonic acid (AA) to prostaglandin H2 (PGH2) in the committed step of prostaglandin biosynthesis. Both enzymes are homodimers, but the monomers often behave asymmetrically as conformational heterodimers during catalysis and inhibition. Here we report that aspirin maximally acetylates one monomer of human (hu) PGHS-2. The acetylated monomer of aspirin-treated huPGHS-2 forms 15-hydroperoxyeicosatetraenoic acid from AA, whereas the nonacetylated partner monomer forms mainly PGH2 but only at 15 to 20% of the rate of native huPGHS-2. These latter conclusions are based on the findings that the nonsteroidal anti-inflammatory drug diclofenac binds a single monomer of native huPGHS-2, having an unmodified Ser530 to inhibit the enzyme, and that diclofenac inhibits PGH2 but not 15-hydroperoxyeicosatraenoic acid formation by acetylated huPGHS-2. The 18R- and 17R-resolvins putatively involved in resolution of inflammation are reportedly formed via aspirin-acetylated PGHS-2 from eicosapentaenoic acid and docosahexaenoic acid, respectively, so we also characterized the oxygenation of these omega-3 fatty acids by aspirin-treated huPGHS-2. Our in vitro studies suggest that 18R- and 17R-resolvins could be formed only at low rates corresponding to less than 1 and 5%, respectively, of the rates of formation of PGH2 by native PGHS-2.
Journal of Immunology | 2010
Takashi Ohtsuka; Paul S. Changelian; Diane Bouis; Kathleen R. Noon; Hiroaki Harada; Vibha N. Lama; David J. Pinsky
There are multiple drivers of leukocyte recruitment in lung allografts that contribute to lymphocytic bronchitis (LB) and bronchiolitis obliterans (BO). The innate mechanisms driving (or inhibiting) leukocyte trafficking to allografts remain incompletely understood. This study tested the hypothesis that CD73 (ecto-5′nucleotidase), an enzyme that catalyzes the conversion of AMP to adenosine, is a critical negative regulator of LB and BO. Implantation of tracheal allografts from wild type (WT) mice into CD73−/− recipients revealed a striking increase in airway luminal obliteration at 7 d (62 ± 4% and 47 ± 5% for CD73−/− and WT allograft recipients, respectively; p = 0.046). There was also a concordant increase in CD3+ lymphocytic infiltration (523 ± 41 cells and 313 ± 43 cells for CD73−/− and WT allograft recipients, respectively; p = 0.013). Because real-time PCR revealed a 43-fold upregulation of mRNA for the adenosine A2A receptor (A2AR) in WT allografts compared with WT isografts (p = 0.032), additional experiments were performed to determine whether the protective effect of CD73 was due to generation of adenosine and its stimulation of the A2AR. Treatment of WT recipients with an A2AR agonist significantly reduced CD3+ lymphocyte infiltration and airway luminal obliteration; similar treatment of CD73−/− recipients rescued them from LB and airway obliteration. These data implicate CD73 acting through adenosine generation and its stimulation of the A2AR as a critical negative modulator of lymphocyte recruitment into airway allografts. The CD73/adenosine axis might be a new therapeutic target to prevent BO.
Journal of Pharmacology and Experimental Therapeutics | 2006
Ute M. Kent; Hsia Lien Lin; Kathleen R. Noon; Danni L. Harris; Paul F. Hollenberg
Cytochromes P450 (P450) 2B6 and 3A5 are inactivated by bergamottin (BG). P450 2B6 metabolized BG primarily to M3 and M4 and one minor metabolite (M1). The metabolites were analyzed, and the data indicated that M1 was bergaptol, M3 was 5′-OH-BG, and M4 was a mixture of 6′- and 7′-OH-BG. Because 6′- and 7′-OH-BG were the primary metabolites, it suggested that P450 2B6 preferentially oxidized the geranyloxy chain of BG. Metabolism of BG by P450 3A5 resulted in three major metabolites: [bergaptol, M3 (5′-OH-BG), and M5 (2′-OH-BG)], and two minor metabolites [M2 (6′,7′-dihydroxy-BG) and M4 (6′- and 7′-OH-BG)]. Because bergaptol was the most abundant metabolite formed, it suggested that P450 3A5 metabolized BG mainly by cleaving the geranyl-oxy chain. Molecular modeling studies confirmed that docking of BG in the P450 2B6 active site favors oxidation in the terminal region of the geranyl-oxy chain, whereas positioning the 2′-carbon of BG nearest the heme iron is preferred by P450 3A5. Glutathione (GSH)-BG conjugates were formed by both P450. Each enzyme predominantly formed conjugates with m/z values of 662. Tandem mass spectrometry analysis of the GSH conjugates indicated that the oxidation forming a reactive intermediate occurred on the furan moiety of BG, presumably through the initial formation of an epoxide at the furan double bond. The data indicate that oxidation of the geranyl-oxy chain resulted in the formation of stable metabolites of BG, whereas oxidation of the furan ring produced reactive intermediates that may be responsible for binding to and inactivating P450 2B6 and 3A4.
Journal of Pharmacology and Experimental Therapeutics | 2009
Hsia Lien Lin; Haoming Zhang; Kathleen R. Noon; Paul F. Hollenberg
The mechanism-based inactivation of cytochrome CYP2B1 [wild type (WT)] and its Thr205 to Ala mutant (T205A) by tert-butylphenylacetylene (BPA) and tert-butyl 1-methyl-2-propynyl ether (BMP) in the reconstituted system was investigated. The inactivation of WT by BPA exhibited a kinact/KI value of 1343 min−1mM−1 and a partition ratio of 1. The inactivation of WT by BMP exhibited a kinact/KI value of 33 min−1mM−1 and a partition ratio of 10. Liquid chromatography/tandem mass spectrometry analysis (LC/MS/MS) of the WT revealed 1) inactivation by BPA resulted in the formation of a protein adduct with a mass increase equivalent to the mass of BPA plus one oxygen atom, and 2) inactivation by BMP resulted in the formation of multiple heme adducts that all exhibited a mass increase equivalent to BMP plus one oxygen atom. LC/MS/MS analysis indicated the formation of glutathione (GSH) conjugates by the reaction of GSH with the ethynyl moiety of BMP or BPA with the oxygen being added to the internal or terminal carbon. For the inactivation of T205A by BPA and BMP, the kinact/KI values were suppressed by 100- and 4-fold, respectively, and the partition ratios were increased 9- and 3.5-fold, respectively. Only one major heme adduct was detected following the inactivation of the T205A by BMP. These results show that the Thr205 in the F-helix plays an important role in the efficiency of the mechanism-based inactivation of CYP2B1 by BPA and BMP. Homology modeling and substrate docking studies were presented to facilitate the interpretation of the experimental results.
Drug and Alcohol Dependence | 2011
Remy L. Brim; Kathleen R. Noon; Joseph Nichols; Diwahar Narasimhan; James H. Woods; Roger K. Sunahara
BACKGROUND Cocaine toxicity is a prevalent problem in the Unites States for which there is currently no FDA-approved pharmacotherapy. We have developed a bacterial cocaine esterase (CocE) towards this indication. A thermostabilized mutant of CocE (DM-CocE) retains the hydrolytic activity of the wild-type esterase, rapidly hydrolyzing cocaine into the inactive metabolites ecgonine methyl ester and benzoic acid, and can prevent cocaine toxicities in rodent and non-human primate models. To advance DM-CocE towards clinical use, we examine here how the hydrolytic activity of DM-CocE is altered by some drugs commonly co-administered with cocaine. METHODS We employed a spectrophotometric cocaine hydrolysis assay to evaluate whether pharmacologically relevant doses of alcohol, nicotine, morphine, phencyclidine, ketamine, methamphetamine, naltrexone, naloxone, or midazolam would alter the Michaelis-Menten kinetics of DM-CocE for cocaine. Mass spectrometry was used to evaluate interaction with diazepam as this drug interferes with the absorbance spectra of cocaine critical for the spectrophotometric assay. RESULTS Alcohol, nicotine, morphine, phencyclidine, ketamine, methamphetamine, naltrexone, naloxone, and midazolam did not alter cocaine hydrolysis by DM-CocE. However, diazepam significantly slowed DM-CocE cocaine hydrolysis at very high concentrations, most likely through interaction of the phenyl ring of the benzodiazepine with the active site of DM-CocE. CONCLUSIONS DM-CocE does not display significant drug interactions, with the exception of diazepam, which may warrant further study as DM-CocE progresses towards a clinically used pharmacotherapy for cocaine toxicity. Alternate benzodiazepines, e.g., midazolam could be used to avoid this potential interaction.
Food Chemistry | 2010
Ara Kirakosyan; E. Mitchell Seymour; Kathleen R. Noon; Daniel E. Urcuyo Llanes; Peter B. Kaufman; Sara Warber; Steven F. Bolling
Methods of Molecular Biology | 2004
Tun-Li Shen; Kathleen R. Noon
Chemical Research in Toxicology | 2005
Anthony J. Lee; Kathleen R. Noon; Suree Jianmongkol; Miranda Lau; Gary J. Jenkins; Yoichi Osawa
Archive | 2011
Kathleen R. Noon; Ara Kirakosyan; Maureen McKenzie; Peter Kaufman
Archive | 2011
Ara Kirakosyan; Kathleen R. Noon; Maureen McKenzie; Leland J. Cseke; Peter Kaufman