Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathleen Seidel is active.

Publication


Featured researches published by Kathleen Seidel.


Neurosurgery | 2012

Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping

Philippe Schucht; Jürgen Beck; Janine Abu-Isa; Lukas Andereggen; Michael Murek; Kathleen Seidel; Lennard Stieglitz; Andreas Raabe

BACKGROUND Complete resection of contrast-enhancing tumor has been recognized as an important prognostic factor in patients with glioblastoma and is a primary goal of surgery. Various intraoperative technologies have recently been introduced to improve glioma surgery. OBJECTIVE To evaluate the impact of using 5-aminolevulinic acid and intraoperative mapping and monitoring on the rate of complete resection of enhancing tumor (CRET), gross total resection (GTR), and new neurological deficits as part of an institutional protocol. METHODS One hundred three consecutive patients underwent resection of glioblastoma from August 2008 to November 2010. Eligibility for CRET was based on the initial magnetic resonance imaging assessed by 2 reviewers. The primary end point was the number of patients with CRET and GTR. Secondary end points were volume of residual contrast-enhancing tissue and new postoperative neurological deficits. RESULTS Fifty-three patients were eligible for GTR/CRET (n = 43 newly diagnosed glioblastoma, n = 10 recurrent); 13 additional patients received surgery for GTR/CRET-ineligible glioblastoma. GTR was achieved in 96% of patients (n = 51, no residual enhancement >0.175 cm); CRET was achieved in 89% (n = 47, no residual enhancement). Postoperatively, 2 patients experienced worsening of preoperative hemianopia, 1 patient had a new mild hemiparesis, and another patient sustained sensory deficits. CONCLUSION Using 5-aminolevulinic acid imaging and intraoperative mapping/monitoring together leads to a high rate of CRET and an increased rate of GTR compared with the literature without increasing the rate of permanent morbidity. The combination of safety and resection-enhancing intraoperative technologies was likely to be the major drivers for this high rate of CRET/GTR.


Journal of Neurosurgery | 2013

The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors.

Kathleen Seidel; Jürgen Beck; Lennart Stieglitz; Philippe Schucht; Andreas Raabe

OBJECT Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST. METHODS A consecutive cohort of 100 patients underwent tumor surgery adjacent to the CST while simultaneous subcortical motor mapping and DCS-MEP monitoring was used. Evaluation was done regarding the lowest subcortical mapping threshold (monopolar stimulation, train of 5 stimuli, interstimulus interval 4.0 msec, pulse duration 500 μsec) and signal changes in DCS-MEPs (same parameters, 4 contact strip electrode). Motor function was assessed 1 day after surgery, at discharge, and at 3 months postoperatively. RESULTS The lowest individual motor thresholds (MTs) were as follows (MT in mA, number of patients): > 20 mA, n = 12; 11-20 mA, n = 13; 6-10 mA, n = 20; 4-5 mA, n = 30; and 1-3 mA, n = 25. Direct cortical stimulation showed stable signals in 70 patients, unspecific changes in 18, irreversible alterations in 8, and irreversible loss in 4 patients. At 3 months, 5 patients had a postoperative new or worsened motor deficit (lowest mapping MT 20 mA, 13 mA, 6 mA, 3 mA, and 1 mA). In all 5 patients DCS-MEP monitoring alterations were documented (2 sudden irreversible threshold increases and 3 sudden irreversible MEP losses). Of these 5 patients, 2 had vascular ischemic lesions (MT 20 mA, 13 mA) and 3 had mechanical CST damage (MT 1 mA, 3 mA, and 6 mA; in the latter 2 cases the resection continued after mapping and severe DCS-MEP alterations occurred thereafter). In 80% of patients with a mapping MT of 1-3 mA and in 75% of patients with a mapping MT of 1 mA, DCS-MEPs were stable or showed unspecific reversible changes, and none had a permanent motor worsening at 3 months. In contrast, 25% of patients with irreversible DCS-MEP changes and 75% of patients with irreversible DCS-MEP loss had permanent motor deficits. CONCLUSIONS Mapping should primarily guide tumor resection adjacent to the CST. DCS-MEP is a useful predictor of deficits, but its value as a warning sign is limited because signal alterations were reversible in only approximately 60% of the present cases and irreversibility is a post hoc definition. The true safe mapping MT is lower than previously thought. The authors postulate a mapping MT of 1 mA or less where irreversible DCS-MEP changes and motor deficits regularly occur. Therefore, they recommend stopping tumor resection at an MT of 2 mA at the latest. The limited spatial and temporal coverage of contemporary mapping may increase error and may contribute to false, higher MTs.


Neurosurgical Focus | 2014

Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome

Philippe Schucht; Kathleen Seidel; Jürgen Beck; Michael Murek; Astrid Jilch; Roland Wiest; Christian Fung; Andreas Raabe

OBJECT Resection of glioblastoma adjacent to motor cortex or subcortical motor pathways carries a high risk of both incomplete resection and postoperative motor deficits. Although the strategy of maximum safe resection is widely accepted, the rates of complete resection of enhancing tumor (CRET) and the exact causes for motor deficits (mechanical vs vascular) are not always known. The authors report the results of their concept of combining monopolar mapping and 5-aminolevulinic acid (5-ALA)-guided surgery in patients with glioblastoma adjacent to eloquent tissue. METHODS The authors prospectively studied 72 consecutive patients who underwent 5-ALA-guided surgery for a glioblastoma adjacent to the corticospinal tract (CST; < 10 mm) with continuous dynamic monopolar motor mapping (short-train interstimulus interval 4.0 msec, pulse duration 500 μsec) coupled to an acoustic motor evoked potential (MEP) alarm. The extent of resection was determined based on early (< 48 hours) postoperative MRI findings. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS Five patients were excluded because of nonadherence to protocol; thus, 67 patients were evaluated. The lowest motor threshold reached during individual surgery was as follows (motor threshold, number of patients): > 20 mA, n = 8; 11-20 mA, n = 13; 6-10 mA, n = 10; 4-5 mA, n = 13; and 1-3 mA, n = 23. Motor deterioration at postsurgical Day 1 and at discharge occurred in 30% (n = 20) and 10% (n = 7) of patients, respectively. At 3 months, 3 patients (4%) had a persisting postoperative motor deficit, 2 caused by vascular injury and 1 by mechanical injury. The rates of intra- and postoperative seizures were 1% and 0%, respectively. Complete resection of enhancing tumor was achieved in 73% of patients (49/67) despite proximity to the CST. CONCLUSIONS A rather high rate of CRET can be achieved in glioblastomas in motor eloquent areas via a combination of 5-ALA for tumor identification and intraoperative mapping for distinguishing between presumed and actual motor eloquent tissues. Continuous dynamic mapping was found to be a very ergonomic technique that localizes the motor tissue early and reliably.


Journal of Neurosurgery | 2014

Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method

Andreas Raabe; Jürgen Beck; Philippe Schucht; Kathleen Seidel

OBJECT The authors developed a new mapping technique to overcome the temporal and spatial limitations of classic subcortical mapping of the corticospinal tract (CST). The feasibility and safety of continuous (0.4-2 Hz) and dynamic (at the site of and synchronized with tissue resection) subcortical motor mapping was evaluated. METHODS The authors prospectively studied 69 patients who underwent tumor surgery adjacent to the CST (< 1 cm using diffusion tensor imaging and fiber tracking) with simultaneous subcortical monopolar motor mapping (short train, interstimulus interval 4 msec, pulse duration 500 μsec) and a new acoustic motor evoked potential alarm. Continuous (temporal coverage) and dynamic (spatial coverage) mapping was technically realized by integrating the mapping probe at the tip of a new suction device, with the concept that this device will be in contact with the tissue where the resection is performed. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS All procedures were technically successful. There was a 1:1 correlation of motor thresholds for stimulation sites simultaneously mapped with the new suction mapping device and the classic fingerstick probe (24 patients, 74 stimulation points; r(2) = 0.98, p < 0.001). The lowest individual motor thresholds were as follows: > 20 mA, 7 patients; 11-20 mA, 13 patients; 6-10 mA, 8 patients; 4-5 mA, 17 patients; and 1-3 mA, 24 patients. At 3 months, 2 patients (3%) had a persistent postoperative motor deficit, both of which were caused by a vascular injury. No patient had a permanent motor deficit caused by a mechanical injury of the CST. CONCLUSIONS Continuous dynamic mapping was found to be a feasible and ergonomic technique for localizing the exact site of the CST and distance to the motor fibers. The acoustic feedback and the ability to stimulate the tissue continuously and exactly at the site of tissue removal improves the accuracy of mapping, especially at low (< 5 mA) stimulation intensities. This new technique may increase the safety of motor eloquent tumor surgery.


PLOS ONE | 2013

Early Re-Do Surgery for Glioblastoma Is a Feasible and Safe Strategy to Achieve Complete Resection of Enhancing Tumor

Philippe Schucht; Michael Murek; Astrid Jilch; Kathleen Seidel; Ekkehard Hewer; Roland Wiest; Andreas Raabe; Jürgen Beck

Background Complete resection of enhancing tumor as assessed by early (<72 hours) postoperative MRI is regarded as the optimal result in glioblastoma surgery. As yet, there is no consensus on standard procedure if post-operative imaging reveals unintended tumor remnants. Objective The current study evaluated the feasibility and safety of an early re-do surgery aimed at completing resections with the aid of 5-ALA fluorescence and neuronavigation after detection of enhancing tumor remnants on post-operative MRI. Methods From October 2008 to October 2012 a single center institutional protocol offered a second surgery within one week to patients with unintentional incomplete glioblastoma resection. We report on the feasibility of the use 5-ALA fluorescence guidance, the extent of resection (EOR) rates and complications of early re-do surgery. Results Nine of 151 patients (6%) with glioblastoma resections had an unintentional tumor remnant with a volume >0.175 cm3. 5-ALA guided re-do surgery completed the resection (CRET) in all patients without causing neurological deficits, infections or other complications. Patients who underwent a re-do surgery remained hospitalized between surgeries, resulting in a mean length of hospital stay of 11 days (range 7-15), compared to 9 days for single surgery (range 3-23; p=0.147). Conclusion Our early re-do protocol led to complete resection of all enhancing tumor in all cases without any new neurological deficits and thus provides a similar oncological result as intraoperative MRI (iMRI). The repeated use of 5-ALA induced fluorescence, used for identification of small remnants, remains highly sensitive and specific in the setting of re-do surgery. Early re-do surgery is a feasible and safe strategy to complete unintended subtotal resections.


Neurosurgery | 2012

Localization of primary language areas by arcuate fascicle fiber tracking.

Lennart Stieglitz; Kathleen Seidel; Roland Wiest; Jürgen Beck; Andreas Raabe

BACKGROUND To reduce the risk of disabling postoperative functional deficit in patients with lesions in the dominant hemisphere, information about the localization of eloquent language areas is mandatory. OBJECTIVE To demonstrate the feasibility of arcuate fascicle (AF) tractography for proper localization of eloquent language areas in the superior temporal (STG) and inferior frontal gyrus (IFG). METHODS Between January and June 2010, we performed surgery in 13 patients with highly eloquent lesions with close spatial relationship to the primary language areas. All of them received preoperative diffusion tensor imaging for AF tractography. The STG and IFG were delineated at the ends of the AF. Five patients underwent functional magnetic resonance imaging of the primary language areas. The results were compared with tractography. RESULTS Tractography of the AF without prior knowledge of the localization of the STG and IFG was feasible in all cases. In the cases with functional magnetic resonance imaging, the activation maps matched the tractography results. In all but 1 patient, preservation of the primary language areas was possible, proven by the good neurological outcome. One patient suffered from a language dysfunction caused by a lesion in the medial and inferior temporal gyrus along the surgical pathway. CONCLUSION Tractography of the AF is a useful tool for identification of parts of the main primary language areas. Using tractography as a localization procedure to determine the primary language areas aids in the delineation of the STG and IFG and thus may help reduce the risk of postoperative permanent neurological deficit.


Operative Neurosurgery | 2012

Low-Threshold Monopolar Motor Mapping for Resection of Primary Motor Cortex Tumors

Kathleen Seidel; Jürgen Beck; Lennart Stieglitz; Philippe Schucht; Andreas Raabe

BACKGROUND: Microsurgery within eloquent cortex is a controversial approach because of the high risk of permanent neurological deficit. Few data exist showing the relationship between the mapping stimulation intensity required for eliciting a muscle motor evoked potential and the distance to the motor neurons; furthermore, the motor threshold at which no deficit occurs remains to be defined. OBJECTIVE: To evaluate the safety of low threshold motor evoked potential mapping for tumor resection close to the primary motor cortex. METHODS: Fourteen patients undergoing tumor surgery were included. Motor threshold was defined as the stimulation intensity that elicited motor evoked potentials from target muscles (amplitude > 30 &mgr;V). Monopolar high-frequency motor mapping with train-of-5 stimuli (HF-TOF; pulse duration = 500 microseconds; interstimulus interval = 4.0 milliseconds; frequency = 250 Hz) was used to determine motor response--negative sites where incision and dissection could be performed. At sites negative to 3-mA HF-TOF stimulation, the tumor was resected. RESULTS: HF-TOF mapping localized the motor neurons within the precentral gyrus by using variable, low-stimulation intensities. The lowest motor thresholds after final resection ranged from 3 to 6 mA, indicating close proximity of motor neurons. Postoperatively, 12 patients had no new motor deficit, 1 patient had a minor new temporary deficit (M4+, National Institutes of Health Stroke Scale 1), and another patient had a minor new permanent deficit (M4+, National Institutes of Health Stroke Scale 2). Thirteen patients had complete or gross total resection. CONCLUSION: These preliminary data demonstrate that a monopolar HF-TOF threshold > 3 mA was not associated with a significant new motor deficit. ABBREVIATIONS: CST, corticospinal tract fMRI, functional magnetic resonance imaging HF-TOF, high-frequency train-of-5 MEP, motor evoked potential NIHSS, National Institutes of Health Stroke Scale


Acta Neurochirurgica | 2017

Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report

Sandro M. Krieg; Pantelis Lioumis; Jyrki P. Mäkelä; Juha Wilenius; Jari Karhu; Henri Hannula; Petri Savolainen; Carolin Weiss Lucas; Kathleen Seidel; Aki Laakso; Mominul Islam; Selja Vaalto; Henri Lehtinen; Anne-Mari Vitikainen; Phiroz E. Tarapore; Thomas Picht

IntroductionNavigated transcranial magnetic stimulation (nTMS) is increasingly used for preoperative mapping of motor function, and clinical evidence for its benefit for brain tumor patients is accumulating. In respect to language mapping with repetitive nTMS, literature reports have yielded variable results, and it is currently not routinely performed for presurgical language localization. The aim of this project is to define a common protocol for nTMS motor and language mapping to standardize its neurosurgical application and increase its clinical value.MethodsThe nTMS workshop group, consisting of highly experienced nTMS users with experience of more than 1500 preoperative nTMS examinations, met in Helsinki in January 2016 for thorough discussions of current evidence and personal experiences with the goal to recommend a standardized protocol for neurosurgical applications.ResultsnTMS motor mapping is a reliable and clinically validated tool to identify functional areas belonging to both normal and lesioned primary motor cortex. In contrast, this is less clear for language-eloquent cortical areas identified by nTMS. The user group agreed on a core protocol, which enables comparison of results between centers and has an excellent safety profile. Recommendations for nTMS motor and language mapping protocols and their optimal clinical integration are presented here.ConclusionAt present, the expert panel recommends nTMS motor mapping in routine neurosurgical practice, as it has a sufficient level of evidence supporting its reliability. The panel recommends that nTMS language mapping be used in the framework of clinical studies to continue refinement of its protocol and increase reliability.


Neurology | 2016

Diskogenic microspurs as a major cause of intractable spontaneous intracranial hypotension

Jürgen Beck; Christian T. Ulrich; Christian Fung; Jens Fichtner; Kathleen Seidel; Michael Fiechter; Kety Wha-Vei Hsieh; Michael Murek; David Bervini; Niklaus Meier; Marie-Luise Mono; Pasquale Mordasini; Ekkehard Hewer; Werner Josef Z'Graggen; Jan Gralla; Andreas Raabe

Objective: To visualize and treat spinal dural CSF leaks in all patients with intractable spontaneous intracranial hypotension (SIH) who underwent spinal microsurgical exploration. Methods: Patients presenting between February 2013 and July 2015 were included in this consecutive case series. The workup included spinal MRI without and with intrathecal contrast, dynamic myelography, postmyelography CT, and microsurgical exploration. Results: Of 69 consecutive patients, 15 had intractable symptoms. Systematic imaging revealed a suspicious single location of the leak in these 15 patients. Fourteen patients underwent microsurgical exploration; 1 patient refused surgery. Intraoperatively, including intradural exploration, we identified the cause of the CSF leaks as a longitudinal dural slit (6.1 ± 1.7 mm) on the ventral (10), lateral (3), or dorsal (1) aspect of the dura. In 10 patients (71%), a ventral, calcified microspur originating from the intervertebral disk perforated the dura like a knife. Three patients (22%) had a lateral dural tear with an associated spinal meningeal diverticulum, and in 1 patient (7%), a dorsal osteophyte was causal. The microspurs were removed and the dural slits sutured with immediate cessation of CSF leakage. Conclusion: The nature of the CSF leak is a circumscribed longitudinal slit at the ventral, lateral, or dorsal dura mater. An extradural pathology, diskogenic microspurs, was the single cause for all ventral CSF leaks. These findings challenge the notion that CSF leaks in SIH are idiopathic or due to a weak dura. Microsurgery is the treatment of choice in cases with intractable SIH.


Movement Disorders | 2018

Directional local field potentials: A tool to optimize deep brain stimulation.

Gerd Tinkhauser; Alek Pogosyan; Ines Debove; Andreas Nowacki; Syed Ahmar Shah; Kathleen Seidel; Huiling Tan; John-Stuart Brittain; Katrin Petermann; Lazzaro di Biase; Markus Florian Oertel; Claudio Pollo; Peter Brown; Michael Schuepbach

Background: Although recently introduced directional DBS leads provide control of the stimulation field, programing is time‐consuming.

Collaboration


Dive into the Kathleen Seidel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge