Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathrine Skak Madsen is active.

Publication


Featured researches published by Kathrine Skak Madsen.


Journal of Cognitive Neuroscience | 2011

White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children

Martin Vestergaard; Kathrine Skak Madsen; William F.C. Baaré; Arnold Skimminge; Lisser Rye Ejersbo; Thomas Z. Ramsøy; Christian Gerlach; Per Åkeson; Olaf B. Paulson; Terry L. Jernigan

During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We hypothesized that better SWM performance would be associated with increased fractional anisotropy (FA) in a left fronto-parietal network composed of the superior longitudinal fasciculus (SLF), the regional white matter underlying the dorsolateral pFC, and the posterior parietal cortex. As hypothesized, we observed a significant association between higher FA in the left fronto-parietal network and better SWM skills, and the effect was independent of age. This association was mainly accounted for by variability in left SLF FA and remained significant when FA measures from global fiber tracts or right SLF were included in the model. Further, the effect of FA in left SLF appeared to be mediated primarily by decreasing perpendicular diffusivity. Such associations could be related to individual differences among children in the architecture of fronto-parietal connections and/or to differences in the pace of fiber tract development. Further studies are needed to determine the contributions of intrinsic and experiential factors to the development of functionally significant individual differences in fiber tract structure.


Neurobiology of Aging | 2008

Reduced 5-HT2A receptor binding in patients with mild cognitive impairment

Steen G. Hasselbalch; Kathrine Skak Madsen; C. Svarer; Lars H. Pinborg; S. Holm; Olaf B. Paulson; Gunhild Waldemar; Gitte M. Knudsen

Previous studies of patients with Alzheimers disease (AD) have described reduced brain serotonin 2A (5-HT(2A)) receptor density. It is unclear whether this abnormality sets in early in the course of the disease and whether it is related to early cognitive and neuropsychiatric symptoms. We assessed cerebral 5-HT(2A) receptor binding in patients with mild cognitive impairment (MCI) and related 5-HT(2A) receptor binding to clinical symptoms. Sixteen patients with MCI of the amnestic type (mean age 73, mean MMSE 26.1) and 17 age and sex matched control subjects were studied with MRI and [(18)F]altanserin PET in a bolus-infusion approach. A significant global reduction of 20-30% in 5-HT(2A) binding (atrophy corrected) was found in most neocortical areas. Reduced 5-HT(2A) binding in the striatum correlated significantly with Neuropsychiatric Inventory depression and anxiety scores. We conclude that widespread reductions in 5-HT(2A) receptor binding were found in amnestic MCI, pointing at the presence of serotonergic dysfunction in prodromal AD. This may provide some of the pathophysiological background for the neuropsychiatric symptoms found in early AD.


Neuropsychologia | 2010

Response inhibition is associated with white matter microstructure in children

Kathrine Skak Madsen; William F.C. Baaré; Martin Vestergaard; Arnold Skimminge; Lisser Rye Ejersbo; Thomas Z. Ramsøy; Christian Gerlach; Per Åkeson; Olaf B. Paulson; Terry L. Jernigan

Cognitive control of thoughts, actions and emotions is important for normal behaviour and the development of such control continues throughout childhood and adolescence. Several lines of evidence suggest that response inhibition is primarily mediated by a right-lateralized network involving inferior frontal gyrus (IFG), presupplementary motor cortex (preSMA), and subthalamic nucleus. Though the brains fibre tracts are known to develop during childhood, little is known about how fibre tract development within this network relates to developing behavioural control. Here we examined the relationship between response inhibition, as measured with the stop-signal task, and indices of regional white matter microstructure in typically-developing children. We hypothesized that better response inhibition performance would be associated with higher fractional anisotropy (FA) in fibre tracts within right IFG and preSMA after controlling for age. Mean FA and diffusivity values were extracted from right and left IFG and preSMA. As hypothesized, faster response inhibition was significantly associated with higher FA and lower perpendicular diffusivity in both the right IFG and the right preSMA, possibly reflecting faster speed of neural conduction within more densely packed or better myelinated fibre tracts. Moreover, both of these effects remained significant after controlling for age and whole brain estimates of these DTI parameters. Interestingly, right IFG and preSMA FA contributed additively to the prediction of performance variability. Observed associations may be related to variation in phase of maturation, to activity-dependent alterations in the network subserving response inhibition, or to stable individual differences in underlying neural system connectivity.


Progress in Brain Research | 2011

Postnatal brain development: structural imaging of dynamic neurodevelopmental processes.

Terry L. Jernigan; William F.C. Baaré; Joan Stiles; Kathrine Skak Madsen

After birth, there is striking biological and functional development of the brains fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories.


Human Brain Mapping | 2013

Sustained attention is associated with right superior longitudinal fasciculus and superior parietal white matter microstructure in children

Brith Klarborg; Kathrine Skak Madsen; Martin Vestergaard; Arnold Skimminge; Terry L. Jernigan; William Frans Christian Baaré

Sustained attention develops during childhood and has been linked to the right fronto‐parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting the right fronto‐parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7–13 years. Sustained attention was assessed using a rapid visual information processing paradigm. The two behavioral measures of interest were the sensitivity index d′ and the coefficient of variation in reaction times (RTCV). Diffusion‐weighted imaging was performed. Mean fractional anisotropy (FA) was extracted from the WM underlying right dorsolateral prefrontal (DLPFC) and parietal cortex (PC), and the right superior longitudinal fasciculus (SLF), as well as equivalent anatomical regions‐of‐interest (ROIs) in the left hemisphere and mean global WM FA. When analyzed collectively, right hemisphere ROIs FA was significantly associated with d′ independently of age. Follow‐up analyses revealed that only FA of right SLF and the superior part of the right PC contributed significantly to this association. RTCV was significantly associated with right superior PC FA, but not with right SLF FA. Observed associations remained significant after controlling for FA of equivalent left hemisphere ROIs or global mean FA. In conclusion, better sustained attention performance was associated with higher FA of WM in regions connecting right frontal and parietal cortices. Further studies are needed to clarify to which extent these associations are driven by maturational processes, stable characteristics and/or experience. Hum Brain Mapp 34:3216–3232, 2013.


Psychiatry Research-neuroimaging | 2012

Cortisol awakening response and negative emotionality linked to asymmetry in major limbic fibre bundle architecture

Kathrine Skak Madsen; Terry L. Jernigan; Pernille Iversen; Vibe G. Frokjaer; Erik Lykke Mortensen; Gitte M. Knudsen; William F.C. Baaré

The limbic system plays an important role in regulating the hypothalamic-pituitary-adrenal (HPA) axis as well as aspects of emotion, and both neuroendocrine disturbance and increased negative emotionality are associated with risk for developing affective disorders. However, the extent to which the architecture of connections between limbic structures may be linked to individual differences in basal HPA-axis reactivity and negative emotionality is unknown. Here we tested the hypotheses that microstructural asymmetry of the major limbic fibre bundles would be associated with cortisol awakening response (CAR) and neuroticism, a personality trait associated with the tendency to experience negative emotions. Sixty-nine healthy adults were studied with diffusion-weighted imaging, and fractional anisotropy (FA) was extracted from the cingulum and uncinate fasciculus. Higher neuroticism scores, which were associated with higher CAR, were also correlated with higher right relative to left cingulum FA. Elevated CAR was associated with the degree of FA asymmetry within both the cingulum and the uncinate fasciculus, but in opposing directions. These results suggest that the balance between left- and right-sided limbic circuits may bear an important relationship to hypothalamic-pituitary-adrenal axis reactivity, and to the tendency to experience negative emotions, and they raise important questions about the significance of limbic system architecture.


Molecular Psychiatry | 2014

Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: a [11C]SB207145 PET study.

Mette E. Haahr; Patrick M. Fisher; Christian Gaden Jensen; V.G. Frokjaer; B. Mc Mahon; Kathrine Skak Madsen; William Frans Christian Baaré; Szabolcs Lehel; A. Norremolle; Eugenii A. Rabiner; Gitte M. Knudsen

Identification of a biomarker that can inform on extracellular serotonin (5-HT) levels in the brains of living humans would enable greater understanding of the way brain circuits are modulated by serotonergic neurotransmission. Substantial evidence from studies in animals and humans indicates an inverse relationship between central 5-HT tonus and 5-HT type 4 receptor (5-HT4R) density, suggesting that 5-HT4R receptor density may be a biomarker marker for 5-HT tonus. Here, we investigated whether a 3-week administration of a selective serotonin reuptake inhibitor, expected to increase brain 5-HT levels, is associated with a decline in brain 5-HT4R binding. A total of 35 healthy men were studied in a placebo-controlled, randomized, double-blind study. Participants were assigned to receive 3 weeks of oral dosing with placebo or fluoxetine, 40 mg per day. Brain 5-HT4R binding was quantified at baseline and at follow-up with [11C]SB207145 positron emission tomography (PET). Three weeks of intervention with fluoxetine was associated with a 5.2% reduction in brain 5-HT4R binding (P=0.017), whereas placebo intervention did not change 5-HT4R binding (P=0.52). Our findings are consistent with a model, wherein the 5-HT4R density adjusts to changes in the extracellular 5-HT tonus. Our data demonstrate for the first time in humans that the imaging of central 5-HT4R binding may be used as an in vivo biomarker of the central 5-HT tonus.


NeuroImage | 2011

Brain microstructural correlates of visuospatial choice reaction time in children.

Kathrine Skak Madsen; William F.C. Baaré; Arnold Skimminge; Martin Vestergaard; Hartwig R. Siebner; Terry L. Jernigan

The corticospinal tracts and the basal ganglia continue to develop during childhood and adolescence, and indices of their maturation can be obtained using diffusion-weighted imaging. Here we show that a simple measure of visuomotor function is correlated with diffusion parameters in the corticospinal tracts and neostriatum. In a cohort of 75 typically-developing children aged 7 to 13years, mean 5-choice reaction times (RTs) were assessed. We hypothesised that children with faster choice RTs would show lower mean diffusivity (MD) in the corticospinal tracts and neostriatum and higher fractional anisotropy (FA) in the corticospinal tracts, after controlling for age, gender, and handedness. Mean MD and/or FA were extracted from the right and left corticospinal tracts, putamen, and caudate nuclei. As predicted, faster 5-choice RTs were associated with lower MD in the corticospinal tracts, putamen, and caudate. MD effects on RT were bilateral in the corticospinal tracts and putamen, whilst right caudate MD was more strongly related to performance than was left caudate MD. Our results suggest a link between motor performance variability in children and diffusivity in the motor system, which may be related to: individual differences in the phase of fibre tract and neostriatal maturation in children of similar age, individual differences in motor experience during childhood (i.e., use-dependent plasticity), and/or more stable individual differences in the architecture of the motor system.


Neural Plasticity | 2005

Erythropoietin Improves Place Learning in an 8-Arm Radial Maze in Fimbria-Fornix Transected Rats

Hana Malá; Carina Gili Alsina; Kathrine Skak Madsen; Else la Cour Sibbesen; Henriette Stick; Jesper Mogensen

Systemically administered human recombinant erythropoietin (EPO) may have the potential to reduce the cognitive and behavioral symptoms of mechanical brain injury. In a series of studies, we address this possibility. We previously found that EPO given to fimbriafornix transected rats at the moment of injury could substantially improve the posttraumatic acquisition of an allocentric place learning task when such a task is administered in a water maze. Due to the clinical importance of such results, it is important to scrutinize whether the therapeutic effect of EPO is specific to the experimental setup of our original experiments or generalizes across test situations. Consequently, here we studied the effects of similarly administered EPO in fimbria-fornix transected and control operated rats, respectively, evaluating the posttraumatic behavioral/cognitive abilities in an allocentric place learning task administered in an 8-arm radial maze. The administration of EPO to the hippocampally injured rats was associated with a virtually complete elimination of the otherwise severe behavioral impairment caused by fimbria-fornix transection. In contrast, EPO had no detectable effect on the task acquisition of non-lesioned animals. The results of the present study confirm our previous demonstration of EPOs ability to reduce or eliminate the behavioral/cognitive consequences of mechanical injury to the hippocampus, while adding the important observation that such a therapeutic effect is not restricted to the specific experimental setup previously studied.


The Journal of Neuroscience | 2015

Central 5-HT neurotransmission modulates weight loss following gastric bypass surgery in obese individuals.

Mette E. Haahr; Dorte Hansen; Patrick M. Fisher; C. Svarer; D.S. Stenbæk; Kathrine Skak Madsen; Joseph R. Madsen; Jens J. Holst; William Frans Christian Baaré; Liselotte Højgaard; Thomas Almdal; Gitte M. Knudsen

The cerebral serotonin (5-HT) system shows distinct differences in obesity compared with the lean state. Here, it was investigated whether serotonergic neurotransmission in obesity is a stable trait or changes in association with weight loss induced by Roux-in-Y gastric bypass (RYGB) surgery. In vivo cerebral 5-HT2A receptor and 5-HT transporter binding was determined by positron emission tomography in 21 obese [four men; body mass index (BMI), 40.1 ± 4.1 kg/m2] and 10 lean (three men; BMI, 24.6 ± 1.5 kg/m2) individuals. Fourteen obese individuals were re-examined after RYGB surgery. First, it was confirmed that obese individuals have higher cerebral 5-HT2A receptor binding than lean individuals. Importantly, we found that higher presurgical 5-HT2A receptor binding predicted greater weight loss after RYGB and that the change in 5-HT2A receptor and 5-HT transporter binding correlated with weight loss after RYGB. The changes in the 5-HT neurotransmission before and after RYGB are in accordance with a model wherein the cerebral extracellular 5-HT level modulates the regulation of body weight. Our findings support that the cerebral 5-HT system contributes both to establish the obese condition and to regulate the body weight in response to RYGB.

Collaboration


Dive into the Kathrine Skak Madsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William F.C. Baaré

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Vestergaard

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Olaf B. Paulson

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Arnold Skimminge

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Fisher

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge