Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William F.C. Baaré is active.

Publication


Featured researches published by William F.C. Baaré.


NeuroImage | 2007

Validation of in vitro probabilistic tractography

Tim B. Dyrby; Lise Vejby Søgaard; Geoffrey J. M. Parker; Daniel C. Alexander; Nanna Marie Lind; William F.C. Baaré; Anders Hay-Schmidt; Nina Eriksen; Bente Pakkenberg; Olaf B. Paulson; Jacob Jelsing

Diffusion weighted imaging (DWI) and tractography allow the non-invasive study of anatomical brain connectivity. However, a gold standard for validating tractography of complex connections is lacking. Using the porcine brain as a highly gyrated brain model, we quantitatively and qualitatively assessed the anatomical validity and reproducibility of in vitro multi-fiber probabilistic tractography against two invasive tracers: the histochemically detectable biotinylated dextran amine and manganese enhanced magnetic resonance imaging. Post mortem DWI was used to ensure that most of the sources known to degrade the anatomical accuracy of in vivo DWI did not influence the tracking results. We demonstrate that probabilistic tractography reliably detected specific pathways. Moreover, the applied model allowed identification of the limitations that are likely to appear in many of the current tractography methods. Nevertheless, we conclude that DWI tractography can be a precise tool in studying anatomical brain connectivity.


Human Brain Mapping | 2011

An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion-weighted imaging datasets.

Tim B. Dyrby; William F.C. Baaré; Daniel C. Alexander; Jacob Jelsing; Ellen Garde; Lise Vejby Søgaard

Diffusion tensor (DT) imaging and related multifiber reconstruction algorithms allow the study of in vivo microstructure and, by means of tractography, structural connectivity. Although reconstruction algorithms are promising imaging tools, high‐quality diffusion‐weighted imaging (DWI) datasets for verification and validation of postprocessing and analysis methods are lacking. Clinical in vivo DWI is limited by, for example, physiological noise and low signal‐to‐noise ratio. Here, we performed a series of DWI measurements on postmortem pig brains, which resemble the human brain in neuroanatomical complexity, to establish an ex vivo imaging pipeline for generating high‐quality DWI datasets. Perfusion fixation ensured that tissue characteristics were comparable to in vivo conditions. There were three main results: (i) heat conduction and unstable tissue mechanics accounted for time‐varying artefacts in the DWI dataset, which were present for up to 15 h after positioning brain tissue in the scanner; (ii) using fitted DT, q‐ball, and persistent angular structure magnetic resonance imaging algorithms, any b‐value between ∼2,000 and ∼8,000 s/mm2, with an optimal value around 4,000 s/mm2, allowed for consistent reconstruction of fiber directions; (iii) diffusivity measures in the postmortem brain tissue were stable over a 3‐year period. On the basis of these results, we established an optimized ex vivo pipeline for high‐quality and high‐resolution DWI. The pipeline produces DWI data sets with a high level of tissue structure detail showing for example two parallel horizontal rims in the cerebral cortex and multiple rims in the hippocampus. We conclude that high‐quality ex vivo DWI can be used to validate fiber reconstruction algorithms and to complement histological studies. Hum Brain Mapp, 2011.


Journal of Cognitive Neuroscience | 2011

White matter microstructure in superior longitudinal fasciculus associated with spatial working memory performance in children

Martin Vestergaard; Kathrine Skak Madsen; William F.C. Baaré; Arnold Skimminge; Lisser Rye Ejersbo; Thomas Z. Ramsøy; Christian Gerlach; Per Åkeson; Olaf B. Paulson; Terry L. Jernigan

During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We hypothesized that better SWM performance would be associated with increased fractional anisotropy (FA) in a left fronto-parietal network composed of the superior longitudinal fasciculus (SLF), the regional white matter underlying the dorsolateral pFC, and the posterior parietal cortex. As hypothesized, we observed a significant association between higher FA in the left fronto-parietal network and better SWM skills, and the effect was independent of age. This association was mainly accounted for by variability in left SLF FA and remained significant when FA measures from global fiber tracts or right SLF were included in the model. Further, the effect of FA in left SLF appeared to be mediated primarily by decreasing perpendicular diffusivity. Such associations could be related to individual differences among children in the architecture of fronto-parietal connections and/or to differences in the pace of fiber tract development. Further studies are needed to determine the contributions of intrinsic and experiential factors to the development of functionally significant individual differences in fiber tract structure.


Neuropsychologia | 2010

Response inhibition is associated with white matter microstructure in children

Kathrine Skak Madsen; William F.C. Baaré; Martin Vestergaard; Arnold Skimminge; Lisser Rye Ejersbo; Thomas Z. Ramsøy; Christian Gerlach; Per Åkeson; Olaf B. Paulson; Terry L. Jernigan

Cognitive control of thoughts, actions and emotions is important for normal behaviour and the development of such control continues throughout childhood and adolescence. Several lines of evidence suggest that response inhibition is primarily mediated by a right-lateralized network involving inferior frontal gyrus (IFG), presupplementary motor cortex (preSMA), and subthalamic nucleus. Though the brains fibre tracts are known to develop during childhood, little is known about how fibre tract development within this network relates to developing behavioural control. Here we examined the relationship between response inhibition, as measured with the stop-signal task, and indices of regional white matter microstructure in typically-developing children. We hypothesized that better response inhibition performance would be associated with higher fractional anisotropy (FA) in fibre tracts within right IFG and preSMA after controlling for age. Mean FA and diffusivity values were extracted from right and left IFG and preSMA. As hypothesized, faster response inhibition was significantly associated with higher FA and lower perpendicular diffusivity in both the right IFG and the right preSMA, possibly reflecting faster speed of neural conduction within more densely packed or better myelinated fibre tracts. Moreover, both of these effects remained significant after controlling for age and whole brain estimates of these DTI parameters. Interestingly, right IFG and preSMA FA contributed additively to the prediction of performance variability. Observed associations may be related to variation in phase of maturation, to activity-dependent alterations in the network subserving response inhibition, or to stable individual differences in underlying neural system connectivity.


Archives of General Psychiatry | 2010

Decreased Frontal Serotonin2A Receptor Binding in Antipsychotic-Naive Patients With First-Episode Schizophrenia

Hans Rasmussen; David Erritzoe; Rune Andersen; Bjørn H. Ebdrup; Bodil Aggernaes; Bob Oranje; Jan Kalbitzer; Jacob Madsen; Lars H. Pinborg; William F.C. Baaré; Claus Svarer; Henrik Lublin; Gitte M. Knudsen; Birte Glenthøj

CONTEXT Postmortem investigations and the receptor affinity profile of atypical antipsychotics have implicated the participation of serotonin(2A) receptors in the pathophysiology of schizophrenia. Most postmortem studies point toward lower cortical serotonin(2A) binding in schizophrenic patients. However, in vivo studies of serotonin(2A) binding report conflicting results, presumably because sample sizes have been small or because schizophrenic patients who were not antipsychotic-naive were included. Furthermore, the relationships between serotonin(2A) binding, psychopathology, and central neurocognitive deficits in schizophrenia are unclear. OBJECTIVES To assess in vivo brain serotonin(2A) binding potentials in a large sample of antipsychotic-naive schizophrenic patients and matched healthy controls, and to examine possible associations with psychopathology, memory, attention, and executive functions. DESIGN Case-control study. SETTING University hospital, Denmark. PARTICIPANTS A sample of 30 first-episode, antipsychotic-naive schizophrenic patients, 23 males and 7 females, and 30 matched healthy control subjects. INTERVENTIONS Positron emission tomography with the serotonin(2A)-specific radioligand fluorine 18-labeled altanserin and administration of a neuropsychological test battery. MAIN OUTCOME MEASURES Binding potential of specific tracer binding, scores on the Positive and Negative Syndrome Scale, and results of neuropsychological testing. RESULTS Schizophrenic patients had significantly lower serotonin(2A) binding in the frontal cortex than did control subjects. A significant negative correlation was observed between frontal cortical serotonin(2A) binding and positive psychotic symptoms in the male patients. No correlations were found between cognitive functions and serotonin(2A) binding. CONCLUSION The results suggest that frontal cortical serotonin(2A) receptors are involved in the pathophysiology of schizophrenia. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00207064.


NeuroImage | 2009

The personality trait openness is related to cerebral 5-HTT levels

Jan Kalbitzer; Vibe G. Frokjaer; David Erritzoe; Claus Svarer; Paul Cumming; Finn Årup Nielsen; Sayed H. Hashemi; William F.C. Baaré; Jacob Madsen; Steen G. Hasselbalch; Morten L. Kringelbach; Erik Lykke Mortensen; Gitte M. Knudsen

Potentiation of serotonergic transmission increases cognitive flexibility, but can in other circumstances increase sensitivity to stressful environmental cues. The personality trait Openness to Experience reflects and is also associated with an increased risk for mood disorders. We hypothesized that the personality trait has an association with a biomarker of serotonergic transmission, the plasma membrane serotonin transporter (5-HTT). In 50 healthy volunteers, we tested for correlations between scores on the NEO-PI-R scale Openness to Experience and its subscales, and cerebral binding of the 5-HTT selective PET radioligand [11C]DASB. Subjects were genotyped for the 5-HTT long/short polymorphism, and for a single nucleotide polymorphism in the long allele, designated LA/LG. Midbrain [11C]DASB binding correlated negatively with scores for Openness to Experience and its two subscales, Openness to Actions and Openness to Values. The latter subscore was negatively correlated with [11C]DASB binding in all brain regions in which [11C]DASB binding was quantified. Genetic analysis showed that homozygote LA carriers had significantly higher [11C]DASB binding in the caudate nucleus, but no significant differences in openness scores. Thus, high scores in personality facets indicative of cognitive flexibility and openness to change are associated with lower [11C]DASB binding. Lower abundance of 5-HTT sites may result in potentiation of serotonergic signaling, which occurs during treatment with SSRIs. We speculate that the set-point of serotonergic signaling in an individual represents a trade-off between flexibility and vulnerability when exposed to environmental stress.


NeuroImage | 2000

Statistical Sulcal Shape Comparisons: Application to the Detection of Genetic Encoding of the Central Sulcus Shape

Georges Le Goualher; Anne-Marie Argenti; Michel Duyme; William F.C. Baaré; H.E. Hulshoff Pol; Dorret I. Boomsma; Abderrezak Zouaoui; Christian Barillot; Alan C. Evans

Principal Component Analysis allows a quantitative description of shape variability with a restricted number of parameters (or modes) which can be used to quantify the difference between two shapes through the computation of a modal distance. A statistical test can then be applied to this set of measurements in order to detect a statistically significant difference between two groups. We have applied this methodology to highlight evidence of genetic encoding of the shape of neuroanatomical structures. To investigate genetic constraint, we studied if shapes were more similar within 10 pairs of monozygotic twins than within interpairs and compared the results with those obtained from 10 pairs of dizygotic twins. The statistical analysis was performed using a Mantel permutation test. We show, using simulations, that this statistical test applied on modal distances can detect a possible genetic encoding. When applied to real data, this study highlighted genetic constraints on the shape of the central sulcus. We found from 10 pairs of monozygotic twins that the intrapair modal distance of the central sulcus was significantly smaller than the interpair modal distance, for both the left central sulcus (Z = -2.66; P < 0.005) and the right central sulcus (Z = -2.26; P < 0.05). Genetic constraints on the definition of the central sulcus shape were confirmed by applying the same experiment to 10 pairs of normal young individuals (Z = -1.39; Z = -0.63, i.e., values not significant at the P < 0.05 level) and 10 pairs of dizygotic twins (Z = 0.47; Z = 0.03, i.e., values not significant at the P < 0.05 level).


Journal of Psychiatric Research | 2010

Hippocampal volume changes in healthy subjects at risk of unipolar depression

William F.C. Baaré; Maj Vinberg; Gitte M. Knudsen; Olaf B. Paulson; Annika Reynberg Langkilde; Terry L. Jernigan; Lars Vedel Kessing

Unipolar depression is moderately heritable. It is unclear whether structural brain changes associated with unipolar depression are present in healthy persons at risk of the disorder. Here we investigated whether a genetic predisposition to unipolar depression is associated with structural brain changes. A priori, hippocampal volume reductions were hypothesized. Using a high-risk study design, magnetic resonance imaging brain scans were obtained from 59 healthy high-risk subjects having a co-twin with unipolar depression, and 53 healthy low-risk subjects without a first-degree family history of major psychiatric disorder. High-risk twins had smaller hippocampal volumes than low-risk twins (p<0.04). The finding was most pronounced in DZ twins. Groups did not differ on global brain tissue volumes or regional tissue volumes assessed in exploratory voxel-wise whole cerebrum analyses. In conclusion, hippocampal volume reduction may index a predisposition to develop depression and thus may be predictive of future onset of the disorder. Further studies are needed to elucidate the role of (shared) environmental and genetic factors.


NeuroImage | 2010

Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

Lisbeth Marner; Nic Gillings; Karine Madsen; David Erritzoe; William F.C. Baaré; Claus Svarer; Steen G. Hasselbalch; Gitte M. Knudsen

Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimers disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy subjects (20-45 years, 8 males) using the simplified reference tissue model. We tested within our population the effect of age and other demographic factors on the endpoint. In seven subjects, we tested the vulnerability of radioligand binding to a pharmacolological challenge with citalopram, which is expected to increase competition from endogenous serotonin. Given radiotracer administration at a range of specific activities, we were able to use the individual BP(ND) measurements for population-based estimation of the saturation binding parameters; B(max) ranged from 0.3 to 1.6 nM. B(max) was in accordance with post-mortem brain studies (Spearmans r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given the low inter-and intrasubject variation, use of the present method will enable detection of a 15% difference in striatum with only 7-13 subjects in a 2-sample test and with only 4-5 subjects in a paired test. The citalopram challenge did not discernibly alter [(11)C]SB207145 binding. In conclusion, the 5-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders.


Progress in Brain Research | 2011

Postnatal brain development: structural imaging of dynamic neurodevelopmental processes.

Terry L. Jernigan; William F.C. Baaré; Joan Stiles; Kathrine Skak Madsen

After birth, there is striking biological and functional development of the brains fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories.

Collaboration


Dive into the William F.C. Baaré's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hartwig R. Siebner

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olaf B. Paulson

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Claus Svarer

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jacob Madsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Kathrine Skak Madsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vibe G. Frokjaer

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge