Kathryn A. Flanagan
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn A. Flanagan.
Publications of the Astronomical Society of the Pacific | 2005
Claude R. Canizares; John E. Davis; Daniel Dewey; Kathryn A. Flanagan; Eugene B. Galton; David P. Huenemoerder; Kazunori Ishibashi; Thomas H. Markert; Herman L. Marshall; Michael McGuirk; Mark L. Schattenburg; Norbert S. Schulz; Henry I. Smith; Michael W. Wise
United States. National Aeronautics and Space Administration. George C. Marshall Space Flight Center (Contract NAS8-38249)
The Astrophysical Journal | 2004
Peter M. Woods; V. M. Kaspi; C. Thompson; Fotis P. Gavriil; Herman L. Marshall; Deepto Chakrabarty; Kathryn A. Flanagan; Jeremy S. Heyl; Lars Hernquist
An outburst of more than 80 individual bursts, similar to those seen from Soft Gamma Repeaters (SGRs), was detected from the anomalous X-ray pulsar (AXP) 1E 2259+586 in 2002 June. Coincident with this burst activity were gross changes in the pulsed flux, persistent flux, energy spectrum, pulse profile, and spin-down of the underlying X-ray source. We present Rossi X-Ray Timing Explorer and X-Ray Multi-Mirror Mission observations of 1E 2259+586 that show the evolution of the aforementioned source parameters during and following this episode and identify recovery timescales for each. Specifically, we observe an X-ray flux increase (pulsed and phase-averaged) by more than an order of magnitude having two distinct components. The first component is linked to the burst activity and decays within ~2 days, during which the energy spectrum is considerably harder than during the quiescent state of the source. The second component decays over the year following the glitch according to a power law in time with an exponent -0.22 ? 0.01. The pulsed fraction decreased initially to ~15% rms but recovered rapidly to the preoutburst level of ~23% within the first 3 days. The pulse profile changed significantly during the outburst and recovered almost fully within 2 months of the outburst. A glitch of size ??max/? = (4.24 ? 0.11) ? 10-6 was observed in 1E 2259+586, which preceded the observed burst activity. The glitch could not be well fitted with a simple partial exponential recovery. An exponential rise of ~20% of the frequency jump with a timescale of ~14 days results in a significantly better fit to the data; however, contamination from a systematic drift in the phase of the pulse profile cannot be excluded. A fraction of the glitch (~19%) was recovered in a quasi-exponential manner having a recovery timescale of ~16 days. The long-term postglitch spin-down rate decreased in magnitude relative to the preglitch value. The changes in the source properties of 1E 2259+586 during its 2002 outburst are shown to be qualitatively similar to changes seen during or following burst activity in two SGRs, thus further solidifying the common nature of SGRs and AXPs as magnetars. The changes in persistent emission properties of 1E 2259+586 suggest that the star underwent a plastic deformation of the crust that simultaneously impacted the superfluid interior (crustal and possibly core superfluid) and the magnetosphere. Finally, the changes in persistent emission properties coincident with burst activity in 1E 2259+586 enabled us to infer previous burst-active episodes from this and other AXPs. The nondetection of these outbursts by all-sky gamma-ray instruments suggests that the number of active magnetar candidates in our Galaxy is larger than previously thought.
The Astrophysical Journal | 2004
Una Hwang; J. Martin Laming; Carles Badenes; Fred Berendse; John M. Blondin; Denis F. Cioffi; Tracey Ann Delaney; Daniel Dewey; Robert A. Fesen; Kathryn A. Flanagan; Christopher L. Fryer; Parviz Ghavamian; John P. Hughes; Jon A. Morse; Paul P. Plucinsky; Robert Petre; M. Pohl; Lawrence Rudnick; Ravi Sankrit; Patrick O. Slane; Randall K. Smith; J. Vink; Jessica S. Warren
We introduce a million second observation of the supernova remnant Cassiopeia A with the Chandra X-Ray Observatory. The bipolar structure of the Si-rich ejecta (northeast jet and southwest counterpart) is clearly evident in the new images, and their chemical similarity is confirmed by their spectra. These are most likely due to jets of ejecta as opposed to cavities in the circumstellar medium, since we can reject simple models for the latter. The properties of these jets and the Fe-rich ejecta will provide clues to the explosion of Cas A.
The Astrophysical Journal | 2016
Jennifer M. Lotz; Anton M. Koekemoer; D. Coe; Norman A. Grogin; P. Capak; Jennifer Mack; J. Anderson; Roberto J. Avila; Elizabeth A. Barker; D. Borncamp; Gabriel B. Brammer; M. Durbin; H. Gunning; B. N. Hilbert; H. Jenkner; H. Khandrika; Z. Levay; Ray A. Lucas; John W. MacKenty; Sara Ogaz; B. Porterfield; N. Reid; Massimo Robberto; P. Royle; Linda J. Smith; Lisa J. Storrie-Lombardi; B. Sunnquist; Jason A. Surace; D. C. Taylor; R. E. Williams
The Frontier Fields are a directors discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combine the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters - Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370 - were selected based on their lensing strength, sky darkness, Galactic extinction, parallel field suitability, accessibility to ground-based facilities, HST, Spitzer and JWST observability, and pre-existing ancillary data. These clusters have been targeted by the HST ACS/WFC and WFC3/IR with coordinated parallels of adjacent blank fields for over 840 HST orbits. The Spitzer Space Telescope has dedicated > 1000 hours of directors discretionary time to obtain IRAC 3.6 and 4.5 micron imaging to ~26.5, 26.0 ABmag 5-sigma point-source depths in the six cluster and six parallel Frontier Fields. The Frontier Field parallel fields are the second-deepest observations thus far by HST with ~29th ABmag 5-sigma point source depths in seven optical - near-infrared bandpasses. Galaxies behind the Frontier Field cluster lenses experience typical magnification factors of a few, with small regions near the critical curves magnified by factors 10-100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ~30-33 magnitudes over very small volumes. Early studies of the Frontier Fields have probed galaxies fainter than any seen before during the epoch of reionization 6 < z < 10, mapped out the cluster dark matter to unprecedented resolution, and followed lensed transient events.
The Astrophysical Journal | 2004
Kathryn A. Flanagan; Claude R. Canizares; Daniel Dewey; John Charles Houck; A. C. Fredericks; Mark L. Schattenburg; Thomas H. Markert; David S. Davis
Chandra High Energy Transmission Grating Spectrometer observations of the supernova remnant (SNR) 1E 0102.2-7219 in the Small Magellanic Cloud reveal a spectrum dominated by X-ray emission lines from hydrogen-like and helium-like ions of oxygen, neon, magnesium, and silicon, with little iron. The dispersed spectrum shows a series of monochromatic images of the source in the light of individual spectral lines. Detailed examination of these dispersed images reveals Doppler shifts within the SNR, indicating bulk matter velocities on the order of 1000 km s-1. These bulk velocities suggest an expanding ringlike structure with additional substructure, inclined to the line of sight. A two-dimensional spatial/velocity map of the SNR shows a striking spatial separation of redshifted and blueshifted regions and indicates a need for further investigation before an adequate three-dimensional model can be found. The radii of the ringlike images of the dispersed spectrum vary with ionization stage, supporting an interpretation of progressive ionization due to passage of the reverse shock through the ejecta. Plasma diagnostics with individual emission lines of oxygen are consistent with an ionizing plasma in the low-density limit and provide temperature and ionization constraints on the plasma. Assuming a pure metal plasma, the mass of oxygen is estimated at ~6 M☉, consistent with a massive progenitor.
Applied Optics | 2006
John F. Seely; Leonid I. Goray; Benjawan Kjornrattanawanich; J. M. Laming; Glenn E. Holland; Kathryn A. Flanagan; Ralf K. Heilmann; Chih-Hao Chang; Mark L. Schattenburg; A. P. Rasmussen
Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 degrees, and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.0 nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating.
Journal of Vacuum Science & Technology B | 2004
Chih-Hao Chang; Juan Montoya; Mireille Akilian; Andrew Lapsa; Ralf K. Heilmann; Mark L. Schattenburg; M. Li; Kathryn A. Flanagan; A. P. Rasmussen; John F. Seely; J. M. Laming; Benjawan Kjornrattanawanich; Leonid I. Goray
We report progress in using nanoimprint lithography to fabricate high fidelity blazed diffraction gratings. Anisotropically etched silicon gratings with 200nm period and 7.5° blaze angle were successfully replicated onto 100mm diameter wafers with subnanometer roughness and excellent profile conformity. Out-of-plane distortion induced by residual stress from polymer films was also analyzed and found to be extremely low. The replicated blazed gratings were tested and demonstrated high x-ray diffraction efficiencies. This process was developed for fabricating blazed diffraction gratings for the NASA Constellation-X x-ray telescope.
The Astrophysical Journal | 1995
A. P. Marston; Debra Meloy Elmegreen; B. Elmegreen; William R. Forman; C. Jones; Kathryn A. Flanagan
Our analysis of a 24 ks ROSAT Position Sensitive Proprtional Counter (PSPC) image of the interacting galaxies NGC 5194 (M51) and NGC 5195 shows that X-ray emission is distributed across the whole of NGC 5194. In addition to the diffuse emission and a bright nuclear region, eight individual sources were detected with 0.2-2.2 keV luminosities from 5 to 29 x 10(exp 38) ergs/s, more than 10 times higher than typical bright Galactic X-ray sources. The energy distribution of the luminous sources can be characterized by bremsstrahlung spectra with temperatures around 1 keV and low-energy absorption exceeding that expected from our Galaxy. Two sources lie in an inner spiral arm, while five lie along the outer edges of the outer spiral arms. Four sources (R1, R2, R4, R6) lie in or near regions of recent star formation as indicated by H II regions or CO emission from molecular clouds. However, for three of the X-ray sources which fall on the outer edge of the spiral arms (R3, R7, and R8), there is little or no associated CO or H alpha emission. We discuss the origin of the luminous X-ray sources as possibly arising from either massive black holes in binary star systems, supernova remnants, or hot gas associated with star forming regions.
The Astrophysical Journal | 2009
Julia C. Lee; Jingen Xiang; Bruce Ravel; J. B. Kortright; Kathryn A. Flanagan
We present a newtechnique for determining the quantity and composition of dust in astrophysical environments using <6 keV X-rays.We argue that high-resolution X-ray spectra as enabled by the Chandra and XMM-Newton gratings should be considered a powerful and viable new resource for delving into a relatively unexplored regime for directlydetermining dust properties: composition, quantity, and distribution.We present initial cross section measurements of astrophysically likely iron-based dust candidates taken at the Lawrence Berkeley National Laboratory Advanced Light Source synchrotron beamline, as an illustrative tool for the formulation of our technique for determining the quantity and composition of interstellar dust with X-rays. (Cross sections for the materials presented here will be made available for astrophysical modeling in the near future.) Focused at the 700 eV Fe LIII and LII photoelectric edges, we discuss a technique for modeling dust properties in the soft X-rays using L-edge data to complement K-edge X-ray absorption fine structure analysis techniques discussed by Lee & Ravel. The paper is intended to be a techniques paper of interest and useful to both condensed matter experimentalists and astrophysicists. For the experimentalists, we offer a new prescription for normalizing relatively low signal-to-noise ratio L-edge cross section measurements. For astrophysics interests, we discuss the use of X-ray absorption spectra for determining dust composition in cold and ionized astrophysical environments and a new method for determining species-specific gas and dust ratios. Possible astrophysical applications of interest, including relevance to Sagittarius A*, are offered. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters, for proposed and planned missions such as Astro-H and the International X-ray Observatory.
The Astrophysical Journal | 2017
Jennifer M. Lotz; Anton M. Koekemoer; D. Coe; Norman A. Grogin; P. Capak; Jennifer Mack; J. Anderson; Roberto J. Avila; Elizabeth A. Barker; D. Borncamp; Gabriel B. Brammer; M. Durbin; H. Gunning; B. N. Hilbert; H. Jenkner; H. Khandrika; Z. Levay; Ray A. Lucas; John W. MacKenty; Sara Ogaz; B. Porterfield; N. Reid; Massimo Robberto; P. Royle; Linda J. Smith; Lisa J. Storrie-Lombardi; B. Sunnquist; Jason A. Surace; D. C. Taylor; R. E. Williams
What are the faintest distant galaxies we can see with the Hubble Space Telescope (HST) now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a Directors discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST and Spitzer with the natural gravitational telescopes of massive high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. Six clusters—Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745, MACSJ1149.5+2223, Abell S1063, and Abell 370—have been targeted by the HST ACS/WFC and WFC3/IR cameras with coordinated parallel fields for over 840 HST orbits. The parallel fields are the second-deepest observations thus far by HST with 5σ point-source depths of ~29th ABmag. Galaxies behind the clusters experience typical magnification factors of a few, with small regions magnified by factors of 10–100. Therefore, the Frontier Field cluster HST images achieve intrinsic depths of ~30–33 mag over very small volumes. Spitzer has obtained over 1000 hr of Directors discretionary imaging of the Frontier Field cluster and parallels in IRAC 3.6 and 4.5 μm bands to 5σ point-source depths of ~26.5, 26.0 ABmag. We demonstrate the exceptional sensitivity of the HST Frontier Field images to faint high-redshift galaxies, and review the initial results related to the primary science goals.