Kathryn A. Radigan
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn A. Radigan.
PLOS ONE | 2011
G. R. Scott Budinger; Joanne L. McKell; Daniela Urich; Nancy Foiles; Ivy Weiss; Sergio E. Chiarella; Angel Gonzalez; Saul Soberanes; Andrew J. Ghio; Recep Nigdelioglu; Ece Mutlu; Kathryn A. Radigan; David Green; Hau C. Kwaan; Gökhan M. Mutlu
Background Exposure of human populations to ambient particulate matter (PM) air pollution significantly contributes to the mortality attributable to ischemic cardiovascular events. We reported that mice treated with intratracheally instilled PM develop a prothrombotic state that requires the release of IL-6 by alveolar macrophages. We sought to determine whether exposure of mice to PM increases the levels of PAI-1, a major regulator of thrombolysis, via a similar or distinct mechanism. Methods and Principal Findings Adult, male C57BL/6 and IL-6 knock out (IL-6−/−) mice were exposed to either concentrated ambient PM less than 2.5 µm (CAPs) or filtered air 8 hours daily for 3 days or were exposed to either urban particulate matter or PBS via intratracheal instillation and examined 24 hours later. Exposure to CAPs or urban PM resulted in the IL-6 dependent activation of coagulation in the lung and systemically. PAI-1 mRNA and protein levels were higher in the lung and adipose tissue of mice treated with CAPs or PM compared with filtered air or PBS controls. The increase in PAI-1 was similar in wild-type and IL-6−/− mice but was absent in mice treated with etanercept, a TNF-α inhibitor. Treatment with etanercept did not prevent the PM-induced tendency toward thrombus formation. Conclusions Mice exposed to inhaled PM exhibited a TNF-α-dependent increase in PAI-1 and an IL-6-dependent activation of coagulation. These results suggest that multiple mechanisms link PM-induced lung inflammation with the development of a prothrombotic state.
Scientific Reports | 2012
Saul Soberanes; Angel Gonzalez; Daniela Urich; Sergio E. Chiarella; Kathryn A. Radigan; Alvaro Osornio-Vargas; Joy Joseph; B. Kalyanaraman; Karen M. Ridge; Navdeep S. Chandel; Gökhan M. Mutlu; Andrea De Vizcaya-Ruiz; G. R. Scott Budinger
Exposure of human populations to chronically elevated levels of ambient particulate matter air pollution < 2.5 μm in diameter (PM2.5) has been associated with an increase in lung cancer incidence. Over 70% of lung cancer cell lines exhibit promoter methylation of the tumor suppressor p16, an epigenetic modification that reduces its expression. We exposed mice to concentrated ambient PM2.5 via inhalation, 8 hours daily for 3 weeks and exposed primary murine alveolar epithelial cells to daily doses of fine urban PM (5 µg/cm2). In both mice and alveolar epithelial cells, PM exposure increased ROS production, expression of the DNA methyltransferase 1 (DNMT1), and methylation of the p16 promoter. In alveolar epithelial cells, increased transcription of DNMT1 and methylation of the p16 promoter were inhibited by a mitochondrially targeted antioxidant and a JNK inhibitor. These findings provide a potential mechanism by which PM exposure increases the risk of lung cancer.
American Journal of Respiratory and Critical Care Medicine | 2011
G. R. Scott Budinger; Gökhan M. Mutlu; Daniela Urich; Saul Soberanes; Leonard J. Buccellato; Keenan A. Hawkins; Sergio E. Chiarella; Kathryn A. Radigan; James Eisenbart; Hemant Agrawal; Sara K. Berkelhamer; Siegfried Hekimi; Jianke Zhang; Harris Perlman; Paul T. Schumacker; Manu Jain; Navdeep S. Chandel
RATIONALE Acute lung injury and the acute respiratory distress syndrome are characterized by increased lung oxidant stress and apoptotic cell death. The contribution of epithelial cell apoptosis to the development of lung injury is unknown. OBJECTIVES To determine whether oxidant-mediated activation of the intrinsic or extrinsic apoptotic pathway contributes to the development of acute lung injury. METHODS Exposure of tissue-specific or global knockout mice or cells lacking critical components of the apoptotic pathway to hyperoxia, a well-established mouse model of oxidant-induced lung injury, for measurement of cell death, lung injury, and survival. MEASUREMENTS AND MAIN RESULTS We found that the overexpression of SOD2 prevents hyperoxia-induced BAX activation and cell death in primary alveolar epithelial cells and prolongs the survival of mice exposed to hyperoxia. The conditional loss of BAX and BAK in the lung epithelium prevented hyperoxia-induced cell death in alveolar epithelial cells, ameliorated hyperoxia-induced lung injury, and prolonged survival in mice. By contrast, Cyclophilin D-deficient mice were not protected from hyperoxia, indicating that opening of the mitochondrial permeability transition pore is dispensable for hyperoxia-induced lung injury. Mice globally deficient in the BH3-only proteins BIM, BID, PUMA, or NOXA, which are proximal upstream regulators of BAX and BAK, were not protected against hyperoxia-induced lung injury suggesting redundancy of these proteins in the activation of BAX or BAK. CONCLUSIONS Mitochondrial oxidant generation initiates BAX- or BAK-dependent alveolar epithelial cell death, which contributes to hyperoxia-induced lung injury.
American Journal of Respiratory and Critical Care Medicine | 2011
Manu Jain; G. R. Scott Budinger; Amy A. Lo; Daniela Urich; Stephanie Rivera; Asish K. Ghosh; Angel Gonzalez; Sergio E. Chiarella; Katie Marks; Helen K. Donnelly; Saul Soberanes; John Varga; Kathryn A. Radigan; Navdeep S. Chandel; Gökhan M. Mutlu
RATIONALE Diabetic patients have a lower incidence of acute respiratory distress syndrome (ARDS), and those who develop ARDS are less likely to die. The mechanisms that underlie this protection are unknown. OBJECTIVES To determine whether leptin resistance, a feature of diabetes, prevents fibroproliferation after lung injury. METHODS We examined lung injury and fibroproliferation after the intratracheal instillation of bleomycin in wild-type and leptin-resistant (db/db) diabetic mice. We examined the effect of leptin on transforming growth factor (TGF)-β(1)-mediated transcription in primary normal human lung fibroblasts. Bronchoalveolar lavage fluid (BAL) samples from patients with ARDS and ventilated control subjects were obtained for measurement of leptin and active TGF-β(1) levels. MEASUREMENTS AND MAIN RESULTS Diabetic mice (db/db) were resistant to lung fibrosis. The db/db mice had higher levels of peroxisome proliferator-activated receptor-γ (PPARγ), an inhibitor of the transcriptional response to TGF-β(1), a cytokine critical in the pathogenesis of fibroproliferative ARDS. In normal human lung fibroblasts, leptin augmented the transcription of profibrotic genes in response to TGF-β(1) through a mechanism that required PPARγ. In patients with ARDS, BAL leptin levels were elevated and correlated with TGF-β(1) levels. Overall, there was no significant relationship between BAL leptin levels and clinical outcomes; however, in nonobese patients, higher BAL leptin levels were associated with fewer intensive care unit- and ventilator-free days and higher mortality. CONCLUSIONS Leptin signaling is required for bleomycin-induced lung fibrosis. Leptin augments TGF-β(1) signaling in lung fibroblasts by inhibiting PPARγ. These findings provide a mechanism for the observed protection against ARDS observed in diabetic patients.
Particle and Fibre Toxicology | 2011
Ece Mutlu; Phillip Engen; Saul Soberanes; Daniela Urich; Christopher B. Forsyth; Recep Nigdelioglu; Sergio E. Chiarella; Kathryn A. Radigan; Angel Gonzalez; Shriram Jakate; Ali Keshavarzian; G. R. Scott Budinger; Gökhan M. Mutlu
BackgroundExposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles.MethodsWe measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours.ResultsPM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice.ConclusionsExposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.
Journal of Clinical Investigation | 2014
Sergio E. Chiarella; Saul Soberanes; Daniela Urich; Luisa Morales-Nebreda; Recep Nigdelioglu; David Green; James B. Young; Angel Gonzalez; Carmen M. Rosario; Alexander V. Misharin; Andrew J. Ghio; Richard G. Wunderink; Helen K. Donnelly; Kathryn A. Radigan; Harris Perlman; Navdeep S. Chandel; G. R. Scott Budinger; Gökhan M. Mutlu
Acute exposure to particulate matter (PM) air pollution causes thrombotic cardiovascular events, leading to increased mortality rates; however, the link between PM and cardiovascular dysfunction is not completely understood. We have previously shown that the release of IL-6 from alveolar macrophages is required for a prothrombotic state and acceleration of thrombosis following exposure to PM. Here, we determined that PM exposure results in the systemic release of catecholamines, which engage the β2-adrenergic receptor (β2AR) on murine alveolar macrophages and augment the release of IL-6. In mice, β2AR signaling promoted the development of a prothrombotic state that was sufficient to accelerate arterial thrombosis. In primary human alveolar macrophages, administration of a β2AR agonist augmented IL-6 release, while the addition of a beta blocker inhibited PM-induced IL-6 release. Genetic loss or pharmacologic inhibition of the β2AR on murine alveolar macrophages attenuated PM-induced IL-6 release and prothrombotic state. Furthermore, exogenous β2AR agonist therapy further augmented these responses in alveolar macrophages through generation of mitochondrial ROS and subsequent increase of adenylyl cyclase activity. Together, these results link the activation of the sympathetic nervous system by β2AR signaling with metabolism, lung inflammation, and an enhanced susceptibility to thrombotic cardiovascular events.
PLOS ONE | 2012
Kathryn A. Radigan; Daniela Urich; Alexander V. Misharin; Sergio E. Chiarella; Saul Soberanes; Angel Gonzalez; Harris Perlman; Richard G. Wunderink; G. R. Scott Budinger; Gökhan M. Mutlu
Rationale HMG-CoA reductase inhibitors such as rosuvastatin may have immunomodulatory and anti-inflammatory effects that may reduce the severity of influenza A infection. We hypothesized that rosuvastatin would decrease viral replication, attenuate lung injury, and improve mortality following influenza A infection in mice. Methods C57Bl/6 mice were treated daily with rosuvastatin (10 mg/kg/day) supplemented in chow (or control chow) beginning three days prior to infection with either A//Udorn/72 [H3N2] or A/WSN/33 [H1N1] influenza A virus (1×105 pfu/mouse). Plaque assays were used to examine the effect of rosuvastatin on viral replication in vitro and in the lungs of infected mice. We measured cell count with differential, protein and cytokines in the bronchoalveolar lavage (BAL) fluid, histologic evidence of lung injury, and wet-to-dry ratio on Day 1, 2, 4, and 6. We also recorded daily weights and mortality. Results The administration of rosuvastatin had no effect on viral clearance of influenza A after infection. Weight loss, lung inflammation and lung injury severity were similar in the rosuvastatin and control treated mice. In the mice infected with influenza A (A/WSN/33), mortality was unaffected by treatment with rosuvastatin. Conclusions Statins did not alter the replication of influenza A in vitro or enhance its clearance from the lung in vivo. Statins neither attenuated the severity of influenza A-induced lung injury nor had an effect on influenza A-related mortality. Our data suggest that the association between HMG CoA reductase inhibitors and improved outcomes in patients with sepsis and pneumonia are not attributable to their effects on influenza A infection.
American Journal of Respiratory Cell and Molecular Biology | 2015
Luisa Morales-Nebreda; Micah R. Rogel; Jessica L. Eisenberg; Kevin J. Hamill; Saul Soberanes; Recep Nigdelioglu; Monica Chi; Takugo Cho; Kathryn A. Radigan; Karen M. Ridge; Alexander V. Misharin; Alex Woychek; Susan B. Hopkinson; Harris Perlman; Gökhan M. Mutlu; Annie Pardo; Moisés Selman; Jonathan C. R. Jones; G. R. Scott Budinger
Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.
PLOS ONE | 2014
Kathryn A. Radigan; Luisa Morales-Nebreda; Saul Soberanes; Trevor T. Nicholson; Recep Nigdelioglu; Takugo Cho; Monica Chi; Robert B. Hamanaka; Alexander V. Misharin; Harris Perlman; G. R. Scott Budinger; Gökhan M. Mutlu
Rationale During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients. Methods We infected wild-type, obese mice globally deficient in the leptin receptor (db/db) and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepRfl/fl) or macrophages and alveolar type II cells (LysM-Cre/Leprfl/fl) with influenza A virus (A/WSN/33 [H1N1]) (500 and 1500 pfu/mouse) and measured mortality, viral clearance and several markers of lung injury severity. Results The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db) compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepRfl/fl and LysM-Cre+/+/LepRfl /fl mice exhibited improved survival. Conclusions Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.
Journal of Virological Methods | 2014
Luisa Morales-Nebreda; Monica Chi; Emilia Lecuona; Navdeep S. Chandel; Laura A. Dada; Karen M. Ridge; Saul Soberanes; Recep Nigdelioglu; Jacob I. Sznajder; Gökhan M. Mutlu; G. R. Scott Budinger; Kathryn A. Radigan
Infection of mice with human or murine adapted influenza A viruses results in a severe pneumonia. However, the results of studies from different laboratories show surprising variability, even in genetically similar strains. Differences in inoculum size related to the route of viral delivery (intranasal vs. intratracheal) might explain some of this variability. To test this hypothesis, mice were infected intranasally or intratracheally with different doses of influenza A virus (A/WSN/33 [H1N1]). Daily weights, a requirement for euthanasia, viral load in the lungs and brains, inflammatory cytokines, wet-to-dry ratio, total protein and histopathology of the infected mice were examined. With all doses of influenza tested, intranasal delivery resulted in less severe lung injury, as well as smaller and more variable viral loads in the lungs when compared with intratracheal delivery. Virus was not detected in the brain following either method of delivery. It is concluded that compared to intranasal infection, intratracheal infection with influenza A virus is a more reliable method to deliver virus to the lungs.