Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Navdeep S. Chandel is active.

Publication


Featured researches published by Navdeep S. Chandel.


Cell | 1997

Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria

Matthew G. Vander Heiden; Navdeep S. Chandel; Edward K. Williamson; Paul T. Schumacker; Craig B. Thompson

Mitochondrial physiology is disrupted in either apoptosis or necrosis. Here, we report that a wide variety of apoptotic and necrotic stimuli induce progressive mitochondrial swelling and outer mitochondrial membrane rupture. Discontinuity of the outer mitochondrial membrane results in cytochrome c redistribution from the intermembrane space to the cytosol followed by subsequent inner mitochondrial membrane depolarization. The mitochondrial membrane protein Bcl-xL can inhibit these changes in cells treated with apoptotic stimuli. In addition, Bcl-xL-expressing cells adapt to growth factor withdrawal or staurosporine treatment by maintaining a decreased mitochondrial membrane potential. Bcl-xL expression also prevents mitochondrial swelling in response to agents that inhibit oxidative phosphorylation. These data suggest that Bcl-xL promotes cell survival by regulating the electrical and osmotic homeostasis of mitochondria.


Journal of Biological Chemistry | 2000

Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia A MECHANISM OF O2 SENSING

Navdeep S. Chandel; David S. McClintock; Feliciano Ce; Wood Tm; Melendez Ja; Rodriguez Am; Paul T. Schumacker

During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is required for induction of a variety of genes including erythropoietin and vascular endothelial growth factor. Hypoxia increases mitochondrial reactive oxygen species (ROS) generation at Complex III, which causes accumulation of HIF-1α protein responsible for initiating expression of a luciferase reporter construct under the control of a hypoxic response element. This response is lost in cells depleted of mitochondrial DNA (ρ0 cells). Overexpression of catalase abolishes hypoxic response element-luciferase expression during hypoxia. Exogenous H2O2 stabilizes HIF-1α protein during normoxia and activates luciferase expression in wild-type and ρ0 cells. Isolated mitochondria increase ROS generation during hypoxia, as does the bacterium Paracoccus denitrificans. These findings reveal that mitochondria-derived ROS are both required and sufficient to initiate HIF-1α stabilization during hypoxia.


Molecular Cell | 2012

Physiological Roles of Mitochondrial Reactive Oxygen Species

Laura A. Sena; Navdeep S. Chandel

Historically, mitochondrial reactive oxygen species (mROS) were thought to exclusively cause cellular damage and lack a physiological function. Accumulation of ROS and oxidative damage have been linked to multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. Thus, mROS were originally envisioned as a necessary evil of oxidative metabolism, a product of an imperfect system. Yet few biological systems possess such flagrant imperfections, thanks to the persistent optimization of evolution, and it appears that oxidative metabolism is no different. More and more evidence suggests that mROS are critical for healthy cell function. In this Review, we discuss this evidence following some background on the generation and regulation of mROS.


Current Biology | 2014

ROS Function in Redox Signaling and Oxidative Stress

Michael Schieber; Navdeep S. Chandel

Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.

Frank Weinberg; Robert B. Hamanaka; William W. Wheaton; Samuel E. Weinberg; Joy Joseph; Marcos Lopez; B. Kalyanaraman; Gökhan M. Mutlu; G. R. Scott Budinger; Navdeep S. Chandel

Otto Warburgs theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Qo site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.


Nature | 2012

Reductive carboxylation supports growth in tumour cells with defective mitochondria

Andrew R. Mullen; William W. Wheaton; Eunsook S. Jin; Pei Hsuan Chen; Lucas B. Sullivan; Tzuling Cheng; Youfeng Yang; W. Marston Linehan; Navdeep S. Chandel; Ralph J. DeBerardinis

Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP+/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.


Molecular Cell | 1999

Bcl-xL Prevents Cell Death following Growth Factor Withdrawal by Facilitating Mitochondrial ATP/ADP Exchange

Matthew G. Vander Heiden; Navdeep S. Chandel; Paul T. Schumacker; Craig B. Thompson

Growth factor withdrawal is associated with a metabolic arrest that can result in apoptosis. Cell death is preceded by loss of outer mitochondrial membrane integrity and cytochrome c release. These mitochondrial events appear to follow a relative increase in mitochondrial membrane potential. This change in membrane potential results from the failure of the adenine nucleotide translocator (ANT)/voltage-dependent anion channel (VDAC) complex to maintain ATP/ADP exchange. Bcl-xL expression allows growth factor-deprived cells to maintain sufficient mitochondrial ATP/ADP exchange to sustain coupled respiration. These data demonstrate that mitochondrial adenylate transport is under active regulation. Efficient exchange of ADP for ATP is promoted by Bcl-xL expression permitting oxidative phosphorylation to be regulated by cellular ATP/ADP levels and allowing mitochondria to adapt to changes in metabolic demand.


Journal of Immunology | 2000

Role of Oxidants in NF-κB Activation and TNF-α Gene Transcription Induced by Hypoxia and Endotoxin

Navdeep S. Chandel; Wendy C. Trzyna; David S. McClintock; Paul T. Schumacker

The transcription factor NF-κB stimulates the transcription of proinflammatory cytokines including TNF-α. LPS (endotoxin) and hypoxia both induce NF-κB activation and TNF-α gene transcription. Furthermore, hypoxia augments LPS induction of TNF-α mRNA. Previous reports have indicated that antioxidants abolish NF-κB activation in response to LPS or hypoxia, which suggests that reactive oxygen species (ROS) are involved in NF-κB activation. This study tested whether mitochondrial ROS are required for both NF-κB activation and the increase in TNF-α mRNA levels during hypoxia and LPS. Our results indicate that hypoxia (1.5% O2) stimulates NF-κB and TNF-α gene transcription and increases ROS generation as measured by the oxidant sensitive dye 2′,7′-dichlorofluorescein diacetate in murine macrophage J774.1 cells. The antioxidants N-acetylcysteine and pyrrolidinedithiocarbamic acid abolished the hypoxic activation of NF-κB, TNF-α gene transcription, and increases in ROS levels. Rotenone, an inhibitor of mitochondrial complex I, abolished the increase in ROS signal, the activation of NF-κB, and TNF-α gene transcription during hypoxia. LPS stimulated NF-κB and TNF-α gene transcription but not ROS generation in J774.1 cells. Rotenone, pyrrolidinedithiocarbamic acid, and N-acetylcysteine had no effect on the LPS stimulation of NF-κB and TNF-α gene transcription, indicating that LPS activates NF-κB and TNF-α gene transcription through a ROS-independent mechanism. These results indicate that mitochondrial ROS are required for the hypoxic activation of NF-κB and TNF-α gene transcription, but not for the LPS activation of NF-κB.


Journal of Cell Biology | 2007

The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production

Eric L. Bell; Tatyana A. Klimova; James Eisenbart; Carlos T. Moraes; Michael P. Murphy; G. R. Scott Budinger; Navdeep S. Chandel

Mammalian cells increase transcription of genes for adaptation to hypoxia through the stabilization of hypoxia-inducible factor 1α (HIF-1α) protein. How cells transduce hypoxic signals to stabilize the HIF-1α protein remains unresolved. We demonstrate that cells deficient in the complex III subunit cytochrome b, which are respiratory incompetent, increase ROS levels and stabilize the HIF-1α protein during hypoxia. RNA interference of the complex III subunit Rieske iron sulfur protein in the cytochrome b–null cells and treatment of wild-type cells with stigmatellin abolished reactive oxygen species (ROS) generation at the Qo site of complex III. These interventions maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Antioxidants maintained hydroxylation of HIF-1α protein and prevented stabilization of HIF-1α protein during hypoxia. Exogenous hydrogen peroxide under normoxia prevented hydroxylation of HIF-1α protein and stabilized HIF-1α protein. These results provide genetic and pharmacologic evidence that the Qo site of complex III is required for the transduction of hypoxic signal by releasing ROS to stabilize the HIF-1α protein.


Cell Metabolism | 2011

Mitochondrial Complex III ROS Regulate Adipocyte Differentiation

Kathryn V. Tormos; Elena Anso; Robert B. Hamanaka; James Eisenbart; Joy Joseph; B. Kalyanaraman; Navdeep S. Chandel

Adipocyte differentiation is characterized by an increase in mitochondrial metabolism. However, it is not known whether the increase in mitochondrial metabolism is essential for differentiation or a byproduct of the differentiation process. Here, we report that primary human mesenchymal stem cells undergoing differentiation into adipocytes display an early increase in mitochondrial metabolism, biogenesis, and reactive oxygen species (ROS) generation. This early increase in mitochondrial metabolism and ROS generation was dependent on mTORC1 signaling. Mitochondrial-targeted antioxidants inhibited adipocyte differentiation, which was rescued by the addition of exogenous hydrogen peroxide. Genetic manipulation of mitochondrial complex III revealed that ROS generated from this complex is required to initiate adipocyte differentiation. These results indicate that mitochondrial metabolism and ROS generation are not simply a consequence of differentiation but are a causal factor in promoting adipocyte differentiation.

Collaboration


Dive into the Navdeep S. Chandel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manu Jain

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge