Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn Futrega is active.

Publication


Featured researches published by Kathryn Futrega.


Biotechnology Letters | 2012

Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds

Mahboubeh Kabiri; Masoud Soleimani; Iman Shabani; Kathryn Futrega; Naser Ghaemi; Hana Hanaee Ahvaz; Elahe Elahi; Michael R. Doran

Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly l-lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.


Biochemical and Biophysical Research Communications | 2012

3D mesenchymal stem/stromal cell osteogenesis and autocrine signalling.

Mahboubeh Kabiri; Betul Kul; William B. Lott; Kathryn Futrega; Parisa Ghanavi; Zee Upton; Michael R. Doran

Mesenchymal stem/stromal cells (MSC) are rapidly becoming a leading candidate for use in tissue regeneration, with first generation of therapies being approved for use in orthopaedic repair applications. Capturing the full potential of MSC will likely require the development of novel in vitro culture techniques and devices. Herein we describe the development of a straightforward surface modification of an existing commercial product to enable the efficient study of three dimensional (3D) human bone marrow-derived MSC osteogenic differentiation. Hundreds of 3D microaggregates, of either 42 or 168 cells each, were cultured in osteogenic induction medium and their differentiation was compared with that occurring in traditional two dimensional (2D) monolayer cultures. Osteogenic gene expression and matrix composition was significantly enhanced in the 3D microaggregate cultures. Additionally, BMP-2 gene expression was significantly up-regulated in 3D cultures at day 3 and 7 by approximately 25- and 30-fold, respectively. The difference in BMP-2 gene expression between 2D and 3D cultures was negligible in the more mature day 14 osteogenic cultures. These data support the notion that BMP-2 autocrine signalling is up-regulated in 3D MSC cultures, enhancing osteogenic differentiation. This study provides both mechanistic insight into MSC differentiation, as well as a platform for the efficient generation of microtissue units for further investigation or use in tissue engineering applications.


Biomaterials | 2015

The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues

Kathryn Futrega; James S. Palmer; Mackenzie Kinney; William B. Lott; Mark Ungrin; Peter W. Zandstra; Michael R. Doran

Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues fall into common microwells. Herein we describe the first microwell platform that incorporates a mesh to retain microtissues within discrete microwells; the microwell-mesh. We show that bonding a nylon mesh with an appropriate pore size over the microwell openings allows single cells to pass through the mesh into the microwells during the seeding process, but subsequently retains assembled microtissues within discrete microwells. To demonstrate the utility of this platform, we used the microwell-mesh to manufacture hundreds of cartilage microtissues, each formed from 5 × 10(3) bone marrow-derived mesenchymal stem/stromal cells (MSC). The microwell-mesh enabled reliable microtissue retention over 21-day cultures that included multiple full medium exchanges. Cartilage-like matrix formation was more rapid and homogeneous in microtissues than in conventional large diameter control cartilage pellets formed from 2 × 10(5) MSC each. The microwell-mesh platform offers an elegant mechanism to retain microtissues in microwells, and we believe that this improvement will make this platform useful in 3D culture protocols that require multiple medium exchanges, such as those that mimic specific developmental processes or complex sequential drug exposures.


Trends in Molecular Medicine | 2014

Treating the whole not the hole: necessary coupling of technologies for diabetic foot ulcer treatment

Kathryn Futrega; Myfanwy King; William B. Lott; Michael R. Doran

Type 2 diabetes is the epidemic of our generation, and diabetic foot ulcers (DFUs) are a major complication. Although DFU formation itself can indicate disease progression, the failure to effectively treat ulcers contributes further to a decay in patient quality of life and increased mortality. Herein we discuss the development of next-generation DFU therapies including: (i) topical growth factors, (ii) scaffolds, and (iii) cellular therapies. Individually these therapies have yielded measurable but modest improvements in DFU repair. Because DFUs arise as a result of multiple biochemical deficiencies, a singular treatment modality is unlikely to be effective. Next-generation DFU technologies must be combined to address effectively the complex underlying pathology and enable reliable DFU repair.


Journal of Visualized Experiments | 2016

Isolation and Expansion of Mesenchymal Stem/Stromal Cells Derived from Human Placenta Tissue.

Rebecca Pelekanos; Varda S. Sardesai; Kathryn Futrega; William B. Lott; Michael Kuhn; Michael R. Doran

Mesenchymal stem/stromal cells (MSC) are promising candidates for use in cell-based therapies. In most cases, therapeutic response appears to be cell-dose dependent. Human term placenta is rich in MSC and is a physically large tissue that is generally discarded following birth. Placenta is an ideal starting material for the large-scale manufacture of multiple cell doses of allogeneic MSC. The placenta is a fetomaternal organ from which either fetal or maternal tissue can be isolated. This article describes the placental anatomy and procedure to dissect apart the decidua (maternal), chorionic villi (fetal), and chorionic plate (fetal) tissue. The protocol then outlines how to isolate MSC from each dissected tissue region, and provides representative analysis of expanded MSC derived from the respective tissue types. These methods are intended for pre-clinical MSC isolation, but have also been adapted for clinical manufacture of placental MSC for human therapeutic use.


Scientific Reports | 2018

The Microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform

Eman Mohamed Othman Mosaad; Karen F. Chambers; Kathryn Futrega; Judith A. Clements; Michael R. Doran

Treatment following early diagnosis of Prostate cancer (PCa) is increasingly successful, whilst the treatment of advanced and metastatic PCa remains challenging. A major limitation in the development of new therapies is the prediction of drug efficacy using in vitro models. Classic in vitro 2-dimensional (2D) cell monolayer cultures are hypersensitive to anti-cancer drugs. As a result, there has been a surge in the development of platforms that enable three dimensional (3D) cultures thought to better replicate natural physiology and better predict drug efficacy. A deficiency associated with most 3D culture systems is that their complexity reduces the number of replicates and combination therapies that can be feasibly evaluated. Herein, we describe the use of a microwell platform that utilises a nylon mesh to retain 3D micro-tumours in discrete microwells; termed the Microwell-mesh. The Microwell-mesh enables the manufacture of ~150 micro-tumours per well in a 48-well plate, and response to anti-tumour drugs can be readily quantified. Our results demonstrate that 3D micro-tumours, unlike 2D monolayers, are not hypersensitive to Docetaxel or Abiraterone Acetate, providing a superior platform for the evaluation of sequential drug treatment. In summary, the Microwell-mesh provides an efficient 3D micro-tumour platform for single and sequential drug screening.


Osteoarthritis and Cartilage | 2018

Sheep as a model for evaluating mesenchymal stem/stromal cell (MSC)-based chondral defect repair

Ena Music; Kathryn Futrega; Michael R. Doran

Osteoarthritis results from the degradation of articular cartilage and is one of the leading global causes of pain and immobility. Cartilage has a limited capacity for self-repair. While repair can be enhanced through surgical intervention, current methods often generate inferior fibrocartilage and repair is transient. The development of tissue engineering strategies to improve repair outcomes is an active area of research. While small animal models such as rodents and rabbits are often used in early pre-clinical work, larger animals that better recapitulate the anatomy and loading of the human joint are required for late-stage preclinical evaluation. Because of their physiological similarities to humans, and low cost relative to other large animals, sheep are routinely used in orthopedic research, including cartilage repair studies. In recent years, there has been considerable research investment into the development of cartilage repair strategies that utilize mesenchymal stem/stromal cells (MSC). In contrast to autologous chondrocytes derived from biopsies of articular cartilage, MSC offer some benefits including greater expansion capacity and elimination of the risk of morbidity at the cartilage biopsy site. The disadvantages of MSC are related to the challenges of inducing and maintaining a stable chondrocyte-like cell population capable of generating hyaline cartilage. Ovine MSC (oMSC) biology and their utility in sheep cartilage repair models have not been reviewed. Herein, we review the biological properties of MSC derived from sheep tissues, and the use of these cells to study articular cartilage repair in this large animal model.


Stem Cells Translational Medicine | 2018

Concise Review: Quantitative Detection and Modeling the In Vivo Kinetics of Therapeutic Mesenchymal Stem/Stromal Cells

Anastasia Brooks; Kathryn Futrega; Xiaowen Liang; Xiaoling Hu; Xin Liu; Darrell H. G. Crawford; Michael R. Doran; Michael S. Roberts; Haolu Wang

Mesenchymal stem/stromal cells (MSCs) present a promising tool in cell‐based therapy for treatment of various diseases. Currently, optimization of treatment protocols in clinical studies is complicated by the variations in cell dosing, diverse methods used to deliver MSCs, and the variety of methods used for tracking MSCs in vivo. Most studies use a dose escalation approach, and attempt to correlate efficacy with total cell dose. Optimization could be accelerated through specific understanding of MSC distribution in vivo, long‐term viability, as well as their biological fate. While it is not possible to quantitatively detect MSCs in most targeted organs over long time periods after systemic administration in clinical trials, it is increasingly possible to apply pharmacokinetic modeling to predict their distribution and persistence. This Review outlines current understanding of the in vivo kinetics of exogenously administered MSCs, provides a critical analysis of the methods used for quantitative MSC detection in these studies, and discusses the application of pharmacokinetic modeling to these data. Finally, we provide insights on and perspectives for future development of effective therapeutic strategies using pharmacokinetic modeling to maximize MSC therapy and minimize potential side effects. Stem Cells Translational Medicine 2018;7:78–86


Cell and Tissue Research | 2018

Bone marrow-derived stem/stromal cells (BMSC) 3D microtissues cultured in BMP-2 supplemented osteogenic induction medium are prone to adipogenesis

Kathryn Futrega; Eman Mohamed Othman Mosaad; Karen F. Chambers; William B. Lott; Judith A. Clements; Michael R. Doran

Bone marrow-derived mesenchymal stem/stromal cells (BMSC) may facilitate bone repair through secretion of factors that stimulate endogenous repair processes or through direct contribution to new bone through differentiation into osteoblast-like cells. BMSC microtissue culture and differentiation has been widely explored recently, with high-throughput platforms making large-scale manufacture of microtissues increasingly feasible. Bone-like BMSC microtissues could offer an elegant method to enhance bone repair, especially in small-volume non-union defects, where small diameter microtissues could be delivered orthoscopically. Using a high-throughput microwell platform, our data demonstrate that (1) BMSC in 3D microtissue culture result in tissue compaction, rather than growth, (2) not all mineralised bone-like matrix is incorporated in the bulk microtissue mass and (3) a significant amount of lipid vacuole formation is observed in BMSC microtissues exposed to BMP-2. These factors should be considered when optimising BMSC osteogenesis in microtissues or developing BMSC microtissue-based therapeutic delivery processes.


BMC Cancer | 2018

Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures

Eman Mohamed Othman Mosaad; Karen F. Chambers; Kathryn Futrega; Judith A. Clements; Michael R. Doran

BackgroundThere is increasing appreciation that non-cancer cells within the tumour microenvironment influence cancer progression and anti-cancer drug efficacy. For metastatic prostate cancer (PCa), the bone marrow microenvironment influences metastasis, drug response, and possibly drug resistance.MethodsUsing a novel microwell platform, the Microwell-mesh, we manufactured hundreds of 3D co-culture microtissues formed from PCa cells and bone marrow stromal cells. We used luciferase-expressing C42B PCa cells to enable quantification of the number of PCa cells in complex microtissue co-cultures. This strategy enabled us to quantify specific PCa cell growth and death in response to drug treatment, in different co-culture conditions. In parallel, we used Transwell migration assays to characterize PCa cell migration towards different 2D and 3D stromal cell populations.ResultsOur results reveal that PCa cell migration varied depending on the relative aggressiveness of the PCa cell lines, the stromal cell composition, and stromal cell 2D or 3D geometry. We found that C42B cell sensitivity to Docetaxel varied depending on culture geometry, and the presence or absence of different stromal cell populations. By contrast, the C42B cell response to Abiraterone Acetate was dependent on geometry, but not on the presence or absence of stromal cells.ConclusionIn summary, stromal cell composition and geometry influences PCa cell migration, growth and drug response. The Microwell-mesh and microtissues are powerful tools to study these complex 3D interactions.

Collaboration


Dive into the Kathryn Futrega's collaboration.

Top Co-Authors

Avatar

Michael R. Doran

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

William B. Lott

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kerry Atkinson

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Betul Kul

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eman Mohamed Othman Mosaad

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Judith A. Clements

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison M. Rice

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Brooke

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge