Kathryn Mazaitis
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathryn Mazaitis.
Machine Learning | 2015
William Yang Wang; Kathryn Mazaitis; Ni Lao; William W. Cohen
One important challenge for probabilistic logics is reasoning with very large knowledge bases (KBs) of imperfect information, such as those produced by modern web-scale information extraction systems. One scalability problem shared by many probabilistic logics is that answering queries involves “grounding” the query—i.e., mapping it to a propositional representation—and the size of a “grounding” grows with database size. To address this bottleneck, we present a first-order probabilistic language called ProPPR in which approximate “local groundings” can be constructed in time independent of database size. Technically, ProPPR is an extension to stochastic logic programs that is biased towards short derivations; it is also closely related to an earlier relational learning algorithm called the path ranking algorithm. We show that the problem of constructing proofs for this logic is related to computation of personalized PageRank on a linearized version of the proof space, and based on this connection, we develop a provably-correct approximate grounding scheme, based on the PageRank–Nibble algorithm. Building on this, we develop a fast and easily-parallelized weight-learning algorithm for ProPPR. In our experiments, we show that learning for ProPPR is orders of magnitude faster than learning for Markov logic networks; that allowing mutual recursion (joint learning) in KB inference leads to improvements in performance; and that ProPPR can learn weights for a mutually recursive program with hundreds of clauses defining scores of interrelated predicates over a KB containing one million entities.
conference on information and knowledge management | 2014
William Yang Wang; Kathryn Mazaitis; William W. Cohen
A key challenge in information and knowledge management is to automatically discover the underlying structures and patterns from large collections of extracted information. This paper presents a novel structure-learning method for a new, scalable probabilistic logic called ProPPR. Our approach builds on the recent success of meta-interpretive learning methods in Inductive Logic Programming (ILP), and we further extends it to a framework that enables robust and efficient structure learning of logic programs on graphs: using an abductive second-order probabilistic logic, we show how first-order theories can be automatically generated via parameter learning. To learn better theories, we then propose an iterated structural gradient approach that incrementally refines the hypothesized space of learned first-order structures. In experiments, we show that the proposed method further improves the results, outperforming competitive baselines such as Markov Logic Networks (MLNs) and FOIL on multiple datasets with various settings; and that the proposed approach can learn structures in a large knowledge base in a tractable fashion.
empirical methods in natural language processing | 2014
William Yang Wang; Lingpeng Kong; Kathryn Mazaitis; William W. Cohen
Dependency parsing is a core task in NLP, and it is widely used by many applications such as information extraction, question answering, and machine translation. In the era of social media, a big challenge is that parsers trained on traditional newswire corpora typically suffer from the domain mismatch issue, and thus perform poorly on social media data. We present a new GFL/FUDG-annotated Chinese treebank with more than 18K tokens from Sina Weibo (the Chinese equivalent of Twitter). We formulate the dependency parsing problem as many small and parallelizable arc prediction tasks: for each task, we use a programmable probabilistic firstorder logic to infer the dependency arc of a token in the sentence. In experiments, we show that the proposed model outperforms an off-the-shelf Stanford Chinese parser, as well as a strong MaltParser baseline that is trained on the same in-domain data.
national conference on artificial intelligence | 2015
Tom M. Mitchell; William W. Cohen; E. Hruschka; Partha Pratim Talukdar; Justin Betteridge; Andrew Carlson; Bhavana Dalvi; Matt Gardner; Bryan Kisiel; Jayant Krishnamurthy; Ni Lao; Kathryn Mazaitis; T. Mohamed; Ndapandula Nakashole; Emmanouil Antonios Platanios; Alan Ritter; Mehdi Samadi; Burr Settles; Richard C. Wang; Derry Tanti Wijaya; Abhinav Gupta; Xi Chen; A. Saparov; M. Greaves; J. Welling
conference on information and knowledge management | 2013
William Yang Wang; Kathryn Mazaitis; William W. Cohen
arXiv: Computation and Language | 2017
Bhuwan Dhingra; Kathryn Mazaitis; William W. Cohen
international conference on artificial intelligence | 2015
William Yang Wang; Kathryn Mazaitis; William W. Cohen
Archive | 2014
Kathryn Mazaitis; Richard C. Wang; Frank Lin; Bhavana Dalvi; Jakob Bauer; William W. Cohen
national conference on artificial intelligence | 2016
Lidong Bing; Bhuwan Dhingra; Kathryn Mazaitis; Jong Hyuk Park; William W. Cohen
national conference on artificial intelligence | 2014
William Yang Wang; Kathryn Mazaitis; William W. Cohen