Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kathryn N. Farrow is active.

Publication


Featured researches published by Kathryn N. Farrow.


Circulation Research | 2008

Hyperoxia Increases Phosphodiesterase 5 Expression and Activity in Ovine Fetal Pulmonary Artery Smooth Muscle Cells

Kathryn N. Farrow; Beezly S. Groh; Paul T. Schumacker; Satyan Lakshminrusimha; Lyubov Czech; Sylvia F. Gugino; James A. Russell; Robin H. Steinhorn

In the pulmonary vasculature, cGMP concentrations are regulated in part by a cGMP-dependent phosphodiesterase (PDE), PDE5. Infants with persistent pulmonary hypertension of the newborn (PPHN) are often mechanically ventilated with high oxygen concentrations. The effects of hyperoxia on the developing pulmonary vasculature and PDE5 are largely unknown. Here, we demonstrate that exposure of fetal pulmonary artery smooth muscle cells (FPASMCs) to high levels of oxygen for 24 hours leads to decreased responsiveness to exogenous NO, as determined by a decreased intracellular cGMP response, increased PDE5 mRNA and protein expression, as well as increased PDE5 cGMP hydrolytic activity. We demonstrate that inhibition of PDE5 activity with sildenafil partially rescues cGMP responsiveness to exogenous NO. In FPASMCs, hyperoxia leads to increased oxidative stress without increasing cell death. Treatment of normoxic FPASMCs with H2O2 is sufficient to induce PDE5 expression and activity, suggesting that reactive oxygen species mediate the effects of hyperoxia in FPASMCs. In support of this mechanism, a chemical antioxidant, N-acetyl-cysteine, is sufficient to block the hyperoxia-mediated increase in PDE5 expression and activity and rescue cGMP responsiveness to exogenous NO. Finally, ventilation of healthy neonatal sheep with 100% O2 for 24 hours leads to increased PDE5 protein expression in the resistance pulmonary arteries and increased PDE5 activity in whole lung extracts. These data suggest that PDE5 expression and activity play a critical role in modulating neonatal pulmonary vascular tone in response to common clinical treatments for PPHN, such as oxygen and inhaled NO.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension

Kathryn N. Farrow; Satyan Lakshminrusimha; William J. Reda; Stephen Wedgwood; Lyubov Czech; Sylvia F. Gugino; Jonathan M. Davis; James A. Russell; Robin H. Steinhorn

Endothelial nitric oxide (NO) synthase (eNOS) expression and activity are decreased in fetal lambs with persistent pulmonary hypertension (PPHN). We sought to determine the impact of mechanical ventilation with O(2) with or without inhaled NO (iNO) or recombinant human SOD (rhSOD) on eNOS in the ductal ligation model of PPHN. PPHN lambs and age-matched controls were ventilated with 100% O(2) for 24 h alone or combined with 20 ppm iNO continuously or a single dose of rhSOD (5 mg/kg) given intratracheally at delivery. In 1-day spontaneously breathing lambs, eNOS expression in resistance pulmonary arteries increased relative to fetal levels. eNOS expression increased in control lambs ventilated with 100% O(2), but not in PPHN lambs. Addition of iNO or rhSOD increased eNOS expression and decreased generation of reactive oxygen species (ROS) in PPHN lambs relative to those ventilated with 100% O(2) alone. However, only rhSOD restored eNOS function, increased tetrahydrobiopterin (BH(4)), a critical cofactor for eNOS function, and restored GTP cyclohydrolase I expression in isolated vessels and lungs from PPHN lambs. These data suggest that ventilation of PPHN lambs with 100% O(2) increases ROS production, blunts postnatal increases in eNOS expression, and decreases available BH(4) in PPHN lambs. Although the addition of iNO or rhSOD diminished ROS production and increased eNOS expression, only rhSOD improved eNOS function and levels of available BH(4). Thus therapies designed to decrease oxidative stress and restore eNOS coupling, such as rhSOD, may prove useful in the treatment of PPHN in newborn infants.


Antioxidants & Redox Signaling | 2010

Hypoxia Increases ROS Signaling and Cytosolic Ca2+ in Pulmonary Artery Smooth Muscle Cells of Mouse Lungs Slices

Jennifer R. Desireddi; Kathryn N. Farrow; Jeremy D. Marks; Gregory B. Waypa; Paul T. Schumacker

Precapillary arteries constrict during alveolar hypoxia in a response known as hypoxic pulmonary vasoconstriction (HPV). The mechanism by which pulmonary arterial smooth muscle cells (PASMCs) detect a decrease in Po(2) and trigger contraction is not fully understood. Previous studies in cultured PASMCs show that hypoxia induces an increase in reactive oxygen species (ROS) production, but these results may not reflect responses of PASMCs in their native tissue environment. We therefore assessed hypoxia-induced changes in cytosolic ROS in PASMCs of precision-cut mouse lung slices expressing the redox-sensitive protein, RoGFP. Superfusion of lung slices with hypoxic media (1.5% O(2)) resulted in a significant oxidation of RoGFP from normoxic baseline that was attenuated by overexpression of cytosolic catalase. Hypoxic superfusion also increased [Ca(2+)](i) above normoxic baseline; this response was significantly attenuated by cytosolic catalase overexpression or by the administration of EUK134, a synthetic SOD-catalase mimetic. The hypoxia-induced increase in [Ca(2+)](i) was abolished in the absence of extracellular Ca(2+), indicating that ROS signals trigger entry of extracellular calcium. Collectively, these results indicate that an increase in cytosolic ROS signaling is required for the increase in [Ca(2+)](i) in PASMCs in precision-cut mouse lung slices during the acute HPV response.


Pediatric Critical Care Medicine | 2009

Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn

Satyan Lakshminrusimha; Nicolas Porta; Kathryn N. Farrow; Bernadette Chen; Sylvia F. Gugino; Vasanth H. Kumar; James A. Russell; Robin H. Steinhorn

Prostacyclin is a pulmonary vasodilator and is produced by prostacyclin synthase and stimulates adenylate cyclase (AC) via the prostacyclin receptor (IP) to produce cAMP. Forskolin is a direct stimulant of AC. Phosphodiesterase 3 hydrolyzes cAMP and is inhibited by milrinone. Objective: To characterize the prostacyclin-AC-cAMP pathway in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). Setting: University-based laboratory animal facility. Subjects: Lambs delivered to time-dated pregnant ewes. Interventions: Fifth generation pulmonary arteries (PA) and lung parenchyma were isolated from control fetal lambs (n = 8) and fetal lambs with PPHN induced by antenatal ductal ligation (n = 9). We studied relaxation responses to various agonists (milrinone, forskolin, prostacyclin, and iloprost, a prostacyclin analog) that increase cAMP in PA after half-maximal constriction with norepinephrine and pretreatment with propranolol ± indomethacin. Lung protein levels of prostacyclin synthase, IP, AC2, and phosphodiesterase 3A were analyzed by Western blot and cAMP by enzyme-linked immunoassay. Main Results: Milrinone relaxed control and PPHN PA and pretreatment with indomethacin significantly impaired this response. Relaxation to milrinone, prostacyclin, and iloprost were significantly impaired in PA from PPHN lambs. Pretreatment with milrinone markedly enhanced relaxation to prostacyclin and iloprost in PPHN PA, similar to relaxation in control PA. Relaxation to forskolin was similar in control and PPHN PAs indicating normal AC activity. Protein levels of prostacyclin synthase and IP were decreased in PPHN lungs compared with control, but AC2, cAMP, and phosphodiesterase 3A remained unchanged. Conclusions: Prostacyclin and iloprost are dilators of PAs from PPHN lambs and their effect is enhanced by milrinone. This combination therapy may be an effective strategy in the management of patients with PPHN.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension.

Kathryn N. Farrow; Satyan Lakshminrusimha; Lyubov Czech; Beezly S. Groh; Sylvia F. Gugino; Jonathan M. Davis; James A. Russell; Robin H. Steinhorn

Phosphodiesterase 5 (PDE5) and soluble guanylate cyclase (sGC) are key regulators of cGMP and pulmonary vascular tone. We sought to determine the impact of mechanical ventilation with O(2) with or without inhaled nitric oxide (iNO) or recombinant human Cu/Zn SOD (rhSOD) on sGC, PDE5, and cGMP in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). PPHN lambs were ventilated with 100% O(2) for 24 h alone or combined with either inhalation of 20 parts per million (ppm) iNO continuously or a single intratracheal dose of rhSOD (5 mg/kg). Ventilated PPHN lambs were compared with PPHN fetuses, control fetuses, and 1-day-old spontaneously breathing lambs (1DSB). In the small pulmonary arteries of 1DSB lambs, sGC expression increased, PDE5 expression decreased, and cGMP concentrations increased relative to fetal levels. In PPHN lambs ventilated with 100% O(2), sGC activity increased to levels comparable with 1DSB levels. However, PDE5 expression and activity increased, and cGMP levels remained at fetal levels. Addition of either iNO or rhSOD decreased PDE5 expression and activity in PPHN lambs and increased cGMP levels to levels comparable with 1DSB lambs. These data suggest that ventilation of PPHN lambs with 100% O(2) impairs cGMP-mediated vasodilation in part due to increased PDE5 expression and activity. The addition of either iNO or rhSOD normalized PDE5 and cGMP levels. Thus therapies designed to decrease PDE5 and increase cGMP, such as iNO and rhSOD, may prove useful in the treatment of PPHN in newborn infants.


Respiratory Physiology & Neurobiology | 2010

MITOCHONDRIAL OXIDANT STRESS INCREASES PDE5 ACTIVITY IN PERSISTENT PULMONARY HYPERTENSION OF THE NEWBORN

Kathryn N. Farrow; Stephen Wedgwood; Keng Jin Lee; Lyubov Czech; Sylvia F. Gugino; Satyan Lakshminrusimha; Paul T. Schumacker; Robin H. Steinhorn

In the pulmonary vasculature, phosphodiesterase-5 (PDE5) degrades cGMP and inhibits nitric oxide-mediated, cGMP-dependent vasorelaxation. We previously reported that ventilation with 100% O2 increased PDE5 activity in pulmonary arteries (PAs) of pulmonary hypertension lambs (PPHN) more than in control lambs. In the present study, PA smooth muscle cells (PASMCs) from PPHN lambs had increased basal PDE5 activity, decreased cGMP-responsiveness to NO, and increased mitochondrial matrix oxidant stress compared to control PASMC. Hyperoxia (24 h) increased PDE5 activity and mitochondrial matrix oxidant stress above baseline to a similar degree in PPHN and control PASMC. Mitochondrially targeted catalase decreased PDE5 activity at baseline and after hyperoxia in PPHN PASMC. Similarly, catalase treatment of PPHN lambs ventilated with 100% O2 decreased PDE5 activity and increased cGMP in PA. We conclude that baseline PDE5 activity and oxidative stress is increased in PPHN PASMC, and scavenging H2O2 is sufficient to block oxidant-mediated increases in PDE5 activity in PPHN.


Placenta | 2014

Placental pathologic changes of maternal vascular underperfusion in bronchopulmonary dysplasia and pulmonary hypertension

Karen K. Mestan; Jennifer Check; Lucy Minturn; Sushmita G. Yallapragada; Kathryn N. Farrow; Xin Liu; Emily Su; Nicolas Porta; Nina L. Gotteiner; Linda M. Ernst

INTRODUCTION Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease of infancy, and BPD-associated pulmonary hypertension (PH) is a serious complication that can negatively impact later childhood health. There is growing evidence that lung injury leading to BPD and PH is due to chronic fetal hypoxia-ischemia. The purpose of this study was to investigate whether placental pathologic changes of maternal vascular underperfusion (MVU) are associated with BPD, and further increased with PH. METHODS We conducted a 5-year retrospective cohort study of premature infants born ≤28 weeks. BPD was defined as persistent oxygen requirement at 36 weeks corrected gestational age. PH was identified using a standardized algorithm of echocardiogram review. Archived placental slides underwent standardized masked histopathologic review. Logistic regression modeling was performed, taking into account important maternal and infant covariates. RESULTS Among 283 births, 121 had MVU, of which 67 (55%) developed BPD, and 24 (20%) had PH. Among the common neonatal complications of extreme prematurity, BPD was the only outcome that was increased with MVU (P < 0.001). After adjustment for birth weight, fetal growth restriction, preeclampsia and other factors, infants with MVU were more likely to develop BPD (adjusted odds ratio = 2.6; 95% confidence interval = 1.4, 4.8). Certain MVU sublesions (fibrinoid necrosis/acute atherosis and distal villous hypoplasia/small terminal villi) were increased with PH (P < 0.001). DISCUSSION Placental MVU may identify BPD infants who were exposed to intrauterine hypoxia-ischemia, which increases their risk for development of PH disease. CONCLUSIONS Our findings have important implications for providing earlier and more effective therapies for BPD.


Antioxidants & Redox Signaling | 2012

Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells.

Kathryn N. Farrow; Keng Jin Lee; Marta Perez; Jacqueline M. Schriewer; Stephen Wedgwood; Satyan Lakshminrusimha; Cody L. Smith; Robin H. Steinhorn; Paul T. Schumacker

AIMS Oxygen is a pulmonary vasodilator, but data suggest high O(2) concentrations impede that response. We previously reported 24 h of 100% O(2) increased phosphodiesterase 5 (PDE5) activity in fetal pulmonary artery smooth muscle cells (FPASMC) and in ventilated neonatal lambs. PDE5 degrades cyclic GMP (cGMP) and inhibits nitric oxide (NO)-mediated cGMP-dependent vasorelaxation. We sought to determine the mechanism by which hyperoxia initiates reactive oxygen species (ROS) production and regulates PDE5. RESULTS Thirty minutes of hyperoxia increased mitochondrial ROS versus normoxia (30.3±1.7% vs. 21.1±2.8%), but had no effect on cytosolic ROS, measured by roGFP, a ratiometric protein thiol redox sensor. Hyperoxia increased PDE5 activity (220±39%) and decreased cGMP responsiveness to NO (37±17%). Mitochondrial catalase overexpression attenuated hyperoxia-induced mitochondrial roGFP oxidation, compared to FPASMC infected with empty adenoviral vector (50±3% of control) or mitochondrial superoxide dismutase. MitoTEMPO, mitochondrial catalase, and DT-3, a cGMP-dependent protein kinase I alpha inhibitor, decreased PDE5 activity (32±13%, 26±21%, and 63±10% of control, respectively), and restored cGMP responsiveness to NO (147±16%,172±29%, and 189±43% of control, respectively). C57Bl6 mice exposed to 90%-100% O(2) for 45 min±mechanical ventilation had increased PA PDE5 activity (206±39% and 235±75%, respectively). INNOVATION This is the first description that hyperoxia induces ROS in the mitochondrial matrix prior to the cytosol. Our results indicate that short hyperoxia exposures can produce significant changes in critical cellular signaling pathways. CONCLUSIONS These results indicate that mitochondrial matrix oxidant signals generated during hyperoxia, specifically H(2)O(2), activate PDE5 in a cGMP-dependent protein kinase-dependent manner in pulmonary vascular smooth muscle cells.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn.

Marta Perez; Satyan Lakshminrusimha; Stephen Wedgwood; Lyubov Czech; Sylvia F. Gugino; James A. Russell; Kathryn N. Farrow; Robin H. Steinhorn

In the pulmonary vasculature, cGMP levels are regulated by soluble guanylate cyclase (sGC) and phosphodiesterase 5 (PDE5). We previously reported that lambs with persistent pulmonary hypertension of the newborn (PPHN) demonstrate increased reactive oxygen species (ROS) and altered sGC and PDE5 activity, with resultant decreased cGMP. The objective of this study was to evaluate the effects of hydrocortisone on pulmonary vascular function, ROS, and cGMP in the ovine ductal ligation model of PPHN. PPHN lambs were ventilated with 100% O(2) for 24 h. Six lambs received 5 mg/kg hydrocortisone every 8 h times three doses (PPHN-hiHC), five lambs received 3 mg/kg hydrocortisone followed by 1 mg·kg(-1)·dose(-1) times two doses (PPHN-loHC), and six lambs were ventilated with O(2) alone (PPHN). All groups were compared with healthy 1-day spontaneously breathing lambs (1DSB). O(2) ventilation of PPHN lambs decreased sGC activity, increased PDE5 activity, and increased ROS vs. 1DSB lambs. Both hydrocortisone doses significantly improved arterial-to-alveolar ratios relative to PPHN lambs, decreased PDE5 activity, and increased cGMP relative to PPHN lambs. High-dose hydrocortisone also increased sGC activity, decreased PDE5 expression, decreased ROS, and increased total vascular SOD activity vs. PPHN lambs. These data suggest that hydrocortisone treatment in clinically relevant doses improves oxygenation and decreases hyperoxia-induced changes in sGC and PDE5 activity, increasing cGMP levels. Hydrocortisone reduces ROS levels in part by increasing SOD activity in PPHN lambs ventilated with 100% O(2.) We speculate that hydrocortisone increases cGMP by direct effects on sGC and PDE5 expression and by attenuating abnormalities induced by oxidant stress.


Pediatric Research | 2009

Regulation of phosphodiesterase 3 in the pulmonary arteries during the perinatal period in sheep.

Bernadette Chen; Satyan Lakshminrusimha; Lyubov Czech; Beezly S. Groh; Sylvia F. Gugino; James A. Russell; Kathryn N. Farrow; Robin H. Steinhorn

The role of cAMP in the pulmonary vasculature during the transition from intrauterine to extrauterine life is poorly understood. We hypothesized that cAMP levels are regulated by alterations in phosphodiesterase 3 (PDE3), which hydrolyzes cAMP. PDE3 protein expression and hydrolytic activity were increased in the resistance pulmonary arteries (PA) from spontaneously breathing 1-d-old (1dSB) lambs relative to equivalent-gestation fetuses. This was accompanied by a decrease in steady-state cAMP. Ventilation with 21% O2 and 100% O2 for 24 h disrupted the normal transition, whereas ventilation with 100% O2 + inhaled NO (iNO) for 24 h restored both PDE3 activity and cAMP to 1dSB levels. Consistent with these findings, relaxation to milrinone, a PDE3 inhibitor, was greater in the PA isolated from 1dSB and 100% O2 + iNO lambs, relative to fetal, 21% O2, and 100% O2 lambs. In conclusion, PDE3 expression and activity in the PA dramatically increase after birth, with a concomitant decrease in steady-state cAMP. Ventilation with either 21% O2 or 100% O2 blunts this PDE3 increase, whereas iNO restores PDE3 activity to levels equivalent to 1dSB lambs. The vasodilatory effects of milrinone were most pronounced in vessels from lambs with the highest PDE3 activity, i.e., 1dSB and 100% O2 + iNO lambs. Thus, milrinone may be most beneficial when used in conjunction with iNO.

Collaboration


Dive into the Kathryn N. Farrow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lyubov Czech

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Russell

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Keng Jin Lee

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge