Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul T. Schumacker is active.

Publication


Featured researches published by Paul T. Schumacker.


Cell | 1997

Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria

Matthew G. Vander Heiden; Navdeep S. Chandel; Edward K. Williamson; Paul T. Schumacker; Craig B. Thompson

Mitochondrial physiology is disrupted in either apoptosis or necrosis. Here, we report that a wide variety of apoptotic and necrotic stimuli induce progressive mitochondrial swelling and outer mitochondrial membrane rupture. Discontinuity of the outer mitochondrial membrane results in cytochrome c redistribution from the intermembrane space to the cytosol followed by subsequent inner mitochondrial membrane depolarization. The mitochondrial membrane protein Bcl-xL can inhibit these changes in cells treated with apoptotic stimuli. In addition, Bcl-xL-expressing cells adapt to growth factor withdrawal or staurosporine treatment by maintaining a decreased mitochondrial membrane potential. Bcl-xL expression also prevents mitochondrial swelling in response to agents that inhibit oxidative phosphorylation. These data suggest that Bcl-xL promotes cell survival by regulating the electrical and osmotic homeostasis of mitochondria.


Journal of Biological Chemistry | 2000

Reactive Oxygen Species Generated at Mitochondrial Complex III Stabilize Hypoxia-inducible Factor-1α during Hypoxia A MECHANISM OF O2 SENSING

Navdeep S. Chandel; David S. McClintock; Feliciano Ce; Wood Tm; Melendez Ja; Rodriguez Am; Paul T. Schumacker

During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is required for induction of a variety of genes including erythropoietin and vascular endothelial growth factor. Hypoxia increases mitochondrial reactive oxygen species (ROS) generation at Complex III, which causes accumulation of HIF-1α protein responsible for initiating expression of a luciferase reporter construct under the control of a hypoxic response element. This response is lost in cells depleted of mitochondrial DNA (ρ0 cells). Overexpression of catalase abolishes hypoxic response element-luciferase expression during hypoxia. Exogenous H2O2 stabilizes HIF-1α protein during normoxia and activates luciferase expression in wild-type and ρ0 cells. Isolated mitochondria increase ROS generation during hypoxia, as does the bacterium Paracoccus denitrificans. These findings reveal that mitochondria-derived ROS are both required and sufficient to initiate HIF-1α stabilization during hypoxia.


Journal of Biological Chemistry | 1998

Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes.

Terry L. Vanden Hoek; Lance B. Becker; Zuohui Shao; Chang Qing Li; Paul T. Schumacker

Reactive oxygen species (ROS) have been proposed to participate in the induction of cardiac preconditioning. However, their source and mechanism of induction are unclear. We tested whether brief hypoxia induces preconditioning by augmenting mitochondrial generation of ROS in chick cardiomyocytes. Cells were preconditioned with 10 min of hypoxia, followed by 1 h of simulated ischemia and 3 h of reperfusion. Preconditioning decreased cell death from 47 ± 3% to 14 ± 2%. Return of contraction was observed in 3/3 preconditioned versus 0/6 non-preconditioned experiments. During induction, ROS oxidation of the probe dichlorofluorescin (sensitive to H2O2) increased ∼2.5-fold. As a substitute for hypoxia, the addition of H2O2 (15 μmol/liter) during normoxia also induced preconditioning-like protection. Conversely, the ROS signal during hypoxia was attenuated with the thiol reductant 2-mercaptopropionyl glycine, the cytosolic Cu,Zn-superoxide dismutase inhibitor diethyldithiocarbamic acid, and the anion channel inhibitor 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, all of which also abrogated protection. ROS generation during hypoxia was attenuated by myxothiazol, but not by diphenyleneiodonium or the nitric-oxide synthase inhibitor l-nitroarginine. We conclude that hypoxia increases mitochondrial superoxide generation which initiates preconditioning protection. Furthermore, mitochondrial anion channels and cytosolic dismutation to H2O2 may be important steps for oxidant induction of hypoxic preconditioning.


Experimental Physiology | 2006

Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia

Robert D. Guzy; Paul T. Schumacker

All eukaryotic cells utilize oxidative phosphorylation to maintain their high‐energy phosphate stores. Mitochondrial oxygen consumption is required for ATP generation, and cell survival is threatened when cells are deprived of O2. Consequently, all cells have the ability to sense O2, and to activate adaptive processes that will enhance the likelihood of survival in anticipation that oxygen availability might become limiting. Mitochondria have long been considered a likely site of oxygen sensing, and we propose that the electron transport chain acts as an O2 sensor by releasing reactive oxygen species (ROS) in response to hypoxia. The ROS released during hypoxia act as signalling agents that trigger diverse functional responses, including activation of gene expression through the stabilization of the transcription factor hypoxia‐inducible factor (HIF)‐α. The primary site of ROS production during hypoxia appears to be complex III. The paradoxical increase in ROS production during hypoxia may be explained by an effect of O2 within the mitochondrial inner membrane on: (a) the lifetime of the ubisemiquinone radical in complex III; (b) the relative release of mitochondrial ROS towards the matrix compartment versus the intermembrane space; or (c) the ability of O2 to access the ubisemiquinone radical in complex III. In summary, the process of oxygen sensing is of fundamental importance in biology. An ability to control the oxygen sensing mechanism in cells, potentially using small molecules that do not disrupt oxygen consumption, would open valuable therapeutic avenues that could have a profound impact on a diverse range of diseases.


Molecular Cell | 1999

Bcl-xL Prevents Cell Death following Growth Factor Withdrawal by Facilitating Mitochondrial ATP/ADP Exchange

Matthew G. Vander Heiden; Navdeep S. Chandel; Paul T. Schumacker; Craig B. Thompson

Growth factor withdrawal is associated with a metabolic arrest that can result in apoptosis. Cell death is preceded by loss of outer mitochondrial membrane integrity and cytochrome c release. These mitochondrial events appear to follow a relative increase in mitochondrial membrane potential. This change in membrane potential results from the failure of the adenine nucleotide translocator (ANT)/voltage-dependent anion channel (VDAC) complex to maintain ATP/ADP exchange. Bcl-xL expression allows growth factor-deprived cells to maintain sufficient mitochondrial ATP/ADP exchange to sustain coupled respiration. These data demonstrate that mitochondrial adenylate transport is under active regulation. Efficient exchange of ADP for ATP is promoted by Bcl-xL expression permitting oxidative phosphorylation to be regulated by cellular ATP/ADP levels and allowing mitochondria to adapt to changes in metabolic demand.


Nature | 2010

Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1

Jaime N. Guzman; Javier Sanchez-Padilla; David L. Wokosin; Jyothisri Kondapalli; Ema Ilijic; Paul T. Schumacker; D. James Surmeier

Parkinson’s disease is a pervasive, ageing-related neurodegenerative disease the cardinal motor symptoms of which reflect the loss of a small group of neurons, the dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial oxidant stress is widely viewed as being responsible for this loss, but why these particular neurons should be stressed is a mystery. Here we show, using transgenic mice that expressed a redox-sensitive variant of green fluorescent protein targeted to the mitochondrial matrix, that the engagement of plasma membrane L-type calcium channels during normal autonomous pacemaking created an oxidant stress that was specific to vulnerable SNc dopaminergic neurons. The oxidant stress engaged defences that induced transient, mild mitochondrial depolarization or uncoupling. The mild uncoupling was not affected by deletion of cyclophilin D, which is a component of the permeability transition pore, but was attenuated by genipin and purine nucleotides, which are antagonists of cloned uncoupling proteins. Knocking out DJ-1 (also known as PARK7 in humans and Park7 in mice), which is a gene associated with an early-onset form of Parkinson’s disease, downregulated the expression of two uncoupling proteins (UCP4 (SLC25A27) and UCP5 (SLC25A14)), compromised calcium-induced uncoupling and increased oxidation of matrix proteins specifically in SNc dopaminergic neurons. Because drugs approved for human use can antagonize calcium entry through L-type channels, these results point to a novel neuroprotective strategy for both idiopathic and familial forms of Parkinson’s disease.


Cell Metabolism | 2011

Unraveling the Biological Roles of Reactive Oxygen Species

Michael P. Murphy; Arne Holmgren; Nils-Göran Larsson; Barry Halliwell; Christopher J. Chang; B. Kalyanaraman; Sue Goo Rhee; Paul J. Thornalley; Linda Partridge; David Gems; Thomas Nyström; Vsevolod V. Belousov; Paul T. Schumacker; Christine C. Winterbourn

Reactive oxygen species are not only harmful agents that cause oxidative damage in pathologies, they also have important roles as regulatory agents in a range of biological phenomena. The relatively recent development of this more nuanced view presents a challenge to the biomedical research community on how best to assess the significance of reactive oxygen species and oxidative damage in biological systems. Considerable progress is being made in addressing these issues, and here we survey some recent developments for those contemplating research in this area.


Journal of Immunology | 2000

Role of Oxidants in NF-κB Activation and TNF-α Gene Transcription Induced by Hypoxia and Endotoxin

Navdeep S. Chandel; Wendy C. Trzyna; David S. McClintock; Paul T. Schumacker

The transcription factor NF-κB stimulates the transcription of proinflammatory cytokines including TNF-α. LPS (endotoxin) and hypoxia both induce NF-κB activation and TNF-α gene transcription. Furthermore, hypoxia augments LPS induction of TNF-α mRNA. Previous reports have indicated that antioxidants abolish NF-κB activation in response to LPS or hypoxia, which suggests that reactive oxygen species (ROS) are involved in NF-κB activation. This study tested whether mitochondrial ROS are required for both NF-κB activation and the increase in TNF-α mRNA levels during hypoxia and LPS. Our results indicate that hypoxia (1.5% O2) stimulates NF-κB and TNF-α gene transcription and increases ROS generation as measured by the oxidant sensitive dye 2′,7′-dichlorofluorescein diacetate in murine macrophage J774.1 cells. The antioxidants N-acetylcysteine and pyrrolidinedithiocarbamic acid abolished the hypoxic activation of NF-κB, TNF-α gene transcription, and increases in ROS levels. Rotenone, an inhibitor of mitochondrial complex I, abolished the increase in ROS signal, the activation of NF-κB, and TNF-α gene transcription during hypoxia. LPS stimulated NF-κB and TNF-α gene transcription but not ROS generation in J774.1 cells. Rotenone, pyrrolidinedithiocarbamic acid, and N-acetylcysteine had no effect on the LPS stimulation of NF-κB and TNF-α gene transcription, indicating that LPS activates NF-κB and TNF-α gene transcription through a ROS-independent mechanism. These results indicate that mitochondrial ROS are required for the hypoxic activation of NF-κB and TNF-α gene transcription, but not for the LPS activation of NF-κB.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Generation of superoxide in cardiomyocytes during ischemia before reperfusion

Lance B. Becker; Terry L. Vanden Hoek; Zuo Hui Shao; Chang Qing Li; Paul T. Schumacker

Although a burst of oxidants has been well described with reperfusion, less is known about the oxidants generated by the highly reduced redox state and low O2 of ischemia. This study aimed to further identify the species and source of these oxidants. Cardiomyocytes were exposed to 1 h of simulated ischemia while oxidant generation was assessed by intracellular dihydroethidine (DHE) oxidation. Ischemia increased DHE oxidation significantly (0.7 ± 0.1 to 2.3 ± 0.3) after 1 h. Myxothiazol (mitochondrial site III inhibitor) attenuated oxidation to 1.3 ± 0.1, as did the site I inhibitors rotenone (1.0 ± 0.1), amytal (1.1 ± 0.1), and the flavoprotein oxidase inhibitor diphenyleneiodonium (0.9 ± 0.1). By contrast, the site IV inhibitor cyanide, as well as inhibitors of xanthine oxidase (allopurinol), nitric oxide synthase (nitro-l-arginine methyl ester), and NADPH oxidase (apocynin), had no effect. Finally, DHE oxidation increased with Cu- and Zn-containing superoxide dismutase (SOD) inhibition using diethyldithiocarbamate (2.7 ± 0.1) and decreased with exogenous SOD (1.1 ± 0.1). We conclude that significant superoxide generation occurs during ischemia before reperfusion from the ubisemiquinone site of the mitochondrial electron transport chain.Although a burst of oxidants has been well described with reperfusion, less is known about the oxidants generated by the highly reduced redox state and low O(2) of ischemia. This study aimed to further identify the species and source of these oxidants. Cardiomyocytes were exposed to 1 h of simulated ischemia while oxidant generation was assessed by intracellular dihydroethidine (DHE) oxidation. Ischemia increased DHE oxidation significantly (0.7 +/- 0.1 to 2.3 +/- 0.3) after 1 h. Myxothiazol (mitochondrial site III inhibitor) attenuated oxidation to 1.3 +/- 0.1, as did the site I inhibitors rotenone (1.0 +/- 0.1), amytal (1.1 +/- 0.1), and the flavoprotein oxidase inhibitor diphenyleneiodonium (0.9 +/- 0.1). By contrast, the site IV inhibitor cyanide, as well as inhibitors of xanthine oxidase (allopurinol), nitric oxide synthase (nitro-L-arginine methyl ester), and NADPH oxidase (apocynin), had no effect. Finally, DHE oxidation increased with Cu- and Zn-containing superoxide dismutase (SOD) inhibition using diethyldithiocarbamate (2.7 +/- 0.1) and decreased with exogenous SOD (1.1 +/- 0.1). We conclude that significant superoxide generation occurs during ischemia before reperfusion from the ubisemiquinone site of the mitochondrial electron transport chain.


Nature Reviews Cancer | 2014

Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?

Simran S. Sabharwal; Paul T. Schumacker

Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy.

Collaboration


Dive into the Paul T. Schumacker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terry L. Vanden Hoek

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge