Kathy Lyons
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kathy Lyons.
Journal of Experimental Medicine | 2003
Ronald S. Veazey; Per Johan Klasse; Thomas J. Ketas; Jacqueline D. Reeves; Michael Piatak; Kevin J. Kunstman; Shawn E. Kuhmann; Preston A. Marx; Jeffrey D. Lifson; Jason Dufour; Megan Mefford; Ivona Pandrea; Steven M. Wolinsky; Robert W. Doms; Julie A. DeMartino; Salvatore J. Siciliano; Kathy Lyons; Martin S. Springer; John P. Moore
Human immunodeficiency virus type 1 (HIV-1) fuses with cells after sequential interactions between its envelope glycoproteins, CD4 and a coreceptor, usually CC chemokine receptor 5 (CCR5) or CXC receptor 4 (CXCR4). CMPD 167 is a CCR5-specific small molecule with potent antiviral activity in vitro. We show that CMPD 167 caused a rapid and substantial (4–200-fold) decrease in plasma viremia in six rhesus macaques chronically infected with simian immunodeficiency virus (SIV) strains SIVmac251 or SIVB670, but not in an animal infected with the X4 simian–human immunodeficiency virus (SHIV), SHIV-89.6P. In three of the SIV-infected animals, viremia reduction was sustained. In one, there was a rapid, but partial, rebound and in another, there was a rapid and complete rebound. There was a substantial delay (>21 d) between the end of therapy and the onset of full viremia rebound in two animals. We also evaluated whether vaginal administration of gel-formulated CMPD 167 could prevent vaginal transmission of the R5 virus, SHIV-162P4. Complete protection occurred in only 2 of 11 animals, but early viral replication was significantly less in the 11 CMPD 167-recipients than in 9 controls receiving carrier gel. These findings support the development of small molecule CCR5 inhibitors as antiviral therapies, and possibly as components of a topical microbicide to prevent HIV-1 sexual transmission.
Journal of Medicinal Chemistry | 2014
Tesfaye Biftu; Ranabir SinhaRoy; Ping Chen; Xiaoxia Qian; Dennis Feng; Jeffrey T. Kuethe; Giovanna Scapin; Ying Duo Gao; Youwei Yan; Davida Krueger; Annette Bak; George J. Eiermann; Jiafang He; Jason M. Cox; Jacqueline D. Hicks; Kathy Lyons; Huaibing He; Gino Salituro; Sharon Tong; Sangita B. Patel; George A. Doss; Aleksandr Petrov; Joe C. Wu; Shiyao Sherrie Xu; Charles Sewall; Xiaoping Zhang; Bei Zhang; Nancy A. Thornberry; Ann E. Weber
In our effort to discover DPP-4 inhibitors with added benefits over currently commercially available DPP-4 inhibitors, MK-3102 (omarigliptin), was identified as a potent and selective dipeptidyl peptidase 4 (DPP-4) inhibitor with an excellent pharmacokinetic profile amenable for once-weekly human dosing and selected as a clinical development candidate. This manuscript summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for omarigliptin, which is currently in phase 3 clinical development.
Journal of Immunology | 2007
Carsten Schröder; Richard N. Pierson; Bao Ngoc H. Nguyen; Douglas W. Kawka; Laurence B. Peterson; Guosheng Wu; T. Zhang; Martin S. Springer; Sal Siciliano; Susan A. Iliff; Julia M. Ayala; Min Lu; John S. Mudgett; Kathy Lyons; Sander G. Mills; Geraldine G. Miller; Irwin I. Singer; Agnes M. Azimzadeh; Julie A. DeMartino
Pharmacologic antagonism of CCR5, a chemokine receptor expressed on macrophages and activated T cells, is an effective antiviral therapy in patients with macrophage-tropic HIV infection, but its efficacy in modulating inflammation and immunity is only just beginning to be investigated. In this regard, the recruitment of CCR5-bearing cells into clinical allografts is a hallmark of acute rejection and may anticipate chronic rejection, whereas conventionally immunosuppressed renal transplant patients homozygous for a nonfunctional Δ32 CCR5 receptor rarely exhibit late graft loss. Therefore, we explored the effects of a potent, highly selective CCR5 antagonist, Merck’s compound 167 (CMPD 167), in an established cynomolgus monkey cardiac allograft model. Although perioperative stress responses (fever, diminished activity) and the recruitment of CCR5-bearing leukocytes into the graft were markedly attenuated, anti-CCR5 monotherapy only marginally prolonged allograft survival. In contrast, relative to cyclosporine A monotherapy, CMPD 167 with cyclosporine A delayed alloantibody production, suppressed cardiac allograft vasculopathy, and tended to further prolong graft survival. CCR5 therefore represents an attractive therapeutic target for attenuating postsurgical stress responses and favorably modulating pathogenic alloimmunity in primates, including man.
Journal of Pharmacology and Experimental Therapeutics | 2011
Xiao-Ming Guan; Joseph M. Metzger; Liming Yang; Kate A. Raustad; Sheng-Ping Wang; Stephanie K. Spann; Jennifer A. Kosinski; Hong Yu; Lauren P. Shearman; Terry D. Faidley; Oksana C. Palyha; Yanqing Kan; Theresa M. Kelly; Iyassu K. Sebhat; Linus S. Lin; Jasminka Dragovic; Kathy Lyons; Stephanie Craw; Ravi P. Nargund; Donald J. Marsh; Alison M. Strack; Marc L. Reitman
Bombesin receptor subtype-3 (BRS-3) is an orphan G protein-coupled receptor implicated in the regulation of energy homeostasis. Here, we report the biologic effects of a highly optimized BRS-3 agonist, (2S)-1,1,1-trifluoro-2-[4-(1H-pyrazol-1-yl)phenyl]-3-(4-{[1-(trifluoromethyl)cyclopropyl]methyl}-1H-imidazol-2-yl)propan-2-ol (MK-5046). Single oral doses of MK-5046 inhibited 2-h and overnight food intake and increased fasting metabolic rate in wild-type but not Brs3 knockout mice. Upon dosing for 14 days, MK-5046 at 25 mg · kg−1 · day−1 reduced body weight of diet-induced obese mouse by 9% compared with vehicle-dosed controls. In mice, 50% brain receptor occupancy was achieved at a plasma concentration of 0.34 ± 0.23 μM. With chronic dosing, effects on metabolic rate, rather than food intake, seem to be the predominant mechanism for weight reduction by MK-5046. The compound also effectively reduced body weight in rats and caused modest increases in body temperature, heart rate, and blood pressure. These latter effects on temperature, heart rate, and blood pressure were transient in nature and desensitized with continued dosing. MK-5046 is the first BRS-3 agonist with properties suitable for use in larger mammals. In dogs, MK-5046 treatment produced statistically significant and persistent weight loss, which was initially accompanied by increases in body temperature and heart rate that abated with continued dosing. Our results demonstrate antiobesity efficacy for MK-5046 in rodents and dogs and further support BRS-3 agonism as a new approach to the treatment of obesity.
ACS Medicinal Chemistry Letters | 2011
Harry R. Chobanian; Yan Guo; Ping Liu; Marc D. Chioda; Thomas J. Lanza; Linda Chang; Theresa M. Kelly; Yanqing Kan; Oksana C. Palyha; Xiao-Ming Guan; Donald J. Marsh; Joseph M. Metzger; Judith N. Gorski; Kate A. Raustad; Sheng-Ping Wang; Alison M. Strack; Randy R. Miller; Jianmei Pang; Maria Madeira; Kathy Lyons; Jasminka Dragovic; Marc L. Reitman; Ravi P. Nargund; Linus S. Lin
Extensive structure-activity relationship studies of a series derived from atropisomer 1, a previously described chiral benzodiazepine sulfonamide series, led to a potent, brain penetrant and selective compound with excellent preclinical pharmacokinetic across species. We also describe the utilization of a high throughput mouse pharmacodynamic assay which allowed for expedient assessment of pharmacokinetic and brain distribution.
Bioorganic & Medicinal Chemistry Letters | 2013
Tesfaye Biftu; Xiaoxia Qian; Ping Chen; Dennis Feng; Giovanna Scapin; Ying-Duo Gao; Jason M. Cox; Ranabir Sinha Roy; George J. Eiermann; Huabing He; Kathy Lyons; Gino Salituro; Sangita B. Patel; Alexander Petrov; Feng Xu; Shiyao Sherrie Xu; Bei Zhang; Charles G. Caldwell; Joseph K. Wu; Ann E. Weber
A series of novel tri-2,3,5-substituted tetrahydropyran analogs were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-4) for the treatment of type 2 diabetes. Optimization of the series provided inhibitors with good DPP-4 potency and selectivity over other peptidases (QPP, DPP8, and FAP). Compound 23, which is very potent, selective, efficacious in the diabetes PD model, and has an excellent pharmacokinetic profile, is selected as a clinical candidate.
Journal of Medicinal Chemistry | 2015
Leticia Toledo-Sherman; Michael Prime; Ladislav Mrzljak; Maria Beconi; Alan Beresford; Frederick Arthur Brookfield; Christopher John Brown; Isabell Cardaun; Stephen Martin Courtney; Ulrike Dijkman; Estelle Hamelin-Flegg; Peter Johnson; Valerie Kempf; Kathy Lyons; Kimberly Matthews; William Leonard Mitchell; Catherine O’Connell; Paula Pena; Kendall Powell; Arash Rassoulpour; Laura Reed; Wolfgang Reindl; Suganathan Selvaratnam; Weslyn Ward Friley; Derek Weddell; Naomi Went; Patricia Wheelan; Christin Winkler; Dirk Winkler; John Wityak
We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.
ACS Medicinal Chemistry Letters | 2011
Ping Liu; Thomas J. Lanza; Marc D. Chioda; Carrie K. Jones; Harry R. Chobanian; Yan Guo; Linda Chang; Theresa M. Kelly; Yanqing Kan; Oksana C. Palyha; Xiao-Ming Guan; Donald J. Marsh; Joseph M. Metzger; Katie Ramsay; Sheng-Ping Wang; Alison M. Strack; Randy R. Miller; Jianmei Pang; Kathy Lyons; Jasminka Dragovic; Jian G. Ning; Wes Schafer; Christopher J. Welch; Xiaoyi Gong; Ying-Duo Gao; Viktor Hornak; Richard G. Ball; Nancy N. Tsou; Marc L. Reitman; Matthew J. Wyvratt
We report herein the discovery of benzodiazepine sulfonamide-based bombesin receptor subtype 3 (BRS-3) agonists and their unusual chirality. Starting from a high-throughput screening lead, we prepared a series of BRS-3 agonists with improved potency and pharmacokinetic properties, of which compound 8a caused mechanism-based, dose-dependent food intake reduction and body weight loss after oral dosing in diet-induced obese mice. This effort also led to the discovery of a novel family of chiral molecules originated from the conformationally constrained seven-membered diazepine ring.
Bioorganic & Medicinal Chemistry | 2012
Harry R. Chobanian; Yan Guo; Ping Liu; Thomas J. Lanza; Marc D. Chioda; Linda Chang; Theresa M. Kelly; Yanqing Kan; Oksana C. Palyha; Xiao-Ming Guan; Donald J. Marsh; Joseph M. Metzger; Katie Raustad; Sheng-Ping Wang; Alison M. Strack; Judith N. Gorski; Randy R. Miller; Jianmei Pang; Kathy Lyons; Jasminka Dragovic; Jian G. Ning; Wes Schafer; Christopher J. Welch; Xiaoyi Gong; Ying-Duo Gao; Viktor Hornak; Marc L. Reitman; Ravi P. Nargund; Linus S. Lin
Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.
Bioorganic & Medicinal Chemistry Letters | 2010
Sriram Tyagarajan; Prasun K. Chakravarty; Bishan Zhou; Michael H. Fisher; Mathew J. Wyvratt; Kathy Lyons; Tracy Klatt; Xiaohua Li; Sanjeev Kumar; Brande S. Williams; John P. Felix; Birgit T. Priest; Richard M. Brochu; Vivien A. Warren; McHardy M. Smith; Maria L. Garcia; Gregory J. Kaczorowski; William J. Martin; Catherine Abbadie; Erin McGowan; Nina Jochnowitz; William H. Parsons
Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. With a goal to develop potent peripherally active sodium channel blockers, a series of low molecular weight biaryl substituted imidazoles, oxazoles, and thiazole carboxamides were identified with good in vitro and in vivo potency.