Katia Balmas Bourloud
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katia Balmas Bourloud.
Oncogene | 2004
Annick Mühlethaler-Mottet; Katia Balmas Bourloud; Katya Auderset; Jean-Marc Joseph; Nicole Gross
Neuroblastoma (NB) is a childhood neoplasm which heterogeneous behavior can be explained by differential regulation of apoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces rapid apoptosis in most tumor cells and thus represents a promising anticancer agent. We have reported silencing of caspase-8 expression in highly malignant NB cells as a possible mechanism of resistance to TRAIL-induced apoptosis. To explore the particular contribution of caspase-8 in such resistance, retroviral-mediated stable caspase-8 expression was induced in the IGR-N91 cells. As a result, sensitivity to TRAIL was fully restored in the caspase-8-complemented cells. TRAIL-induced cell death could be further enhanced by cotreatment of IGR-N91-C8 and SH-EP cells with cycloheximide or subtoxic concentrations of chemotherapeutic drugs in a caspase-dependent manner. Sensitization to TRAIL involved enhanced death receptor DR5 expression, activation of Bid and the complete caspases cascade. Interestingly, combined treatments also enhanced the cleavage-mediated inactivation of antiapoptotic molecules, XIAP, Bcl-xL and RIP.Our results show that restoration of active caspase-8 expression in a caspase-8-deficient NB cell line is necessary and sufficient to fully restore TRAIL sensitivity. Moreover, the synergistic effect of drugs and TRAIL results from activation of the caspase cascade via a mitochondrial pathway-mediated amplification loop and from the inactivation of apoptosis inhibitors.
PLOS ONE | 2007
Roland Meier; Annick Mühlethaler-Mottet; Marjorie Flahaut; Aurélie Coulon; Carlo Fusco; Fawzia Louache; Katya Auderset; Katia Balmas Bourloud; Estelle Daudigeos; Curzio Rüegg; Gilles Vassal; Nicole Gross; Jean-Marc Joseph
Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers.
Molecular Cancer | 2008
Annick Mühlethaler-Mottet; Roland Meier; Marjorie Flahaut; Katia Balmas Bourloud; Katya Nardou; Jean-Marc Joseph; Nicole Gross
BackgroundHistone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities.ResultsWe show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells.ConclusionHDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.
Medical and Pediatric Oncology | 2000
Sally Hopkins-Donaldson; Jean-Luc Bodmer; Katia Balmas Bourloud; Christine Beretta Brognara; Jürg Tschopp; Nicole Gross
UNLABELLED Background and Procedures NB-derived cell lines were tested for their sensitivity to apoptosis induced by the tumor-selective apoptotic ligand TRAIL. Noninvasive S-type cell lines are highly sensitive to TRAIL, whereas invasive N-type cell lines are resistant. RESULTS Although both S- and N-type cell lines express TRAIL-R2, FADD, and caspases-3 and -10, only S-type cells express caspase-8. Reduced levels of caspase-8 protein were also observed in a stage IV NB tumor when compared to a ganglioneuroma. The caspase-8 gene is not deleted in either N-type NB cell lines or high-stage tumors, and expression can be induced by demethylation. CONCLUSIONS Therefore, caspase-8 expression is silenced in malignant NB, which correlates to tumor severity and resistance to TRAIL-induced apoptosis.
Oncogene | 2002
Sally Hopkins-Donaldson; Pu Yan; Katia Balmas Bourloud; Annick Mühlethaler; Jean-Luc Bodmer; Nicole Gross
Death induced by doxorubicin (dox) in neuroblastoma (NB) cells was originally thought to occur via the Fas pathway, however since studies suggest that caspase-8 expression is silenced in most high stage NB tumors, it is more probable that dox-induced death occurs via a different mechanism. Caspase-8 silenced N-type invasive NB cell lines LAN-1 and IMR-32 were investigated for their sensitivity to dox, and compared to S-type noninvasive SH-EP NB cells expressing caspase-8. All cell lines had similar sensitivities to dox, independently of caspase-8 expression. Dox induced caspase-3, -7, -8 and -9 and Bid cleavage in S-type cells and death was blocked by caspase inhibitors but not by oxygen radical scavenger BHA. In contrast, dox-induced death in N-type cells was caspase-independent and was inhibited by BHA. Dox induced a drop in mitochondrial membrane permeability in all cell lines. Dox-induced death in S-type cells gave rise to apoptotic nuclei, whereas in N-type cells nuclei were non-apoptotic in morphology. Transfection of SH-EP cells with a dominant negative FADD mutant inhibited TRAIL-induced death, but had no effect on dox-induced apoptosis. These results suggest that S-type cells undergo apoptosis after dox treatment independently of death receptors, whereas N-type cells are killed by a caspase-independent mechanism.
BMC Cancer | 2006
Annick Mühlethaler-Mottet; Marjorie Flahaut; Katia Balmas Bourloud; Katya Auderset; Roland Meier; Jean-Marc Joseph; Nicole Gross
BackgroundNeuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified.MethodsNB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting.ResultsSub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs.ConclusionHDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas.
Genes, Chromosomes and Cancer | 2003
Pu Yan; Annick Mühlethaler; Katia Balmas Bourloud; Maja Nenadov Beck; Nicole Gross
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single‐strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44‐negative cell lines displayed hypermethylation in both regions, whereas all CD44‐expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44‐negative cells with the 5‐aza‐2′‐deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation‐independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell–specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation‐mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Genes, Chromosomes and Cancer | 2006
Marjorie Flahaut; Annick Mühlethaler-Mottet; Danielle Martinet; Sarah Fattet; Katia Balmas Bourloud; Katya Auderset; Roland Meier; Nathalie Besuchet Schmutz; Olivier Delattre; Jean-Marc Joseph; Nicole Gross
Neuroblastoma is a heterogeneous neural crest–derived embryonic childhood neoplasm that is the second most common solid tumor found in children. Despite recent advances in combined therapy, the overall survival of patients with high‐stage disease has not improved in the last decades. Treatment failure is in part attributed to multidrug resistance. To address the mechanisms involved in the development of multidrug resistance, we have generated two doxorubicin‐resistant neuroblastoma cell lines (IGRN‐91R and LAN‐1R). These cells were shown to overexpress the MDR1 gene coding for the P‐glycoprotein and were resistant to other MDR1‐ and non‐MDR1‐substrate drugs. Indeed, the MDR1 inhibitor verapamil only partially restored sensitivity to drugs, confirming that P‐glycoprotein‐mediated drug efflux was not responsible for 100% resistance. High‐resolution and array‐based comparative genomic hybridization analyses revealed the presence of an amplicon in the 7q21 region as the unique genomic alteration common to both doxorubicin‐resistant cell lines. In addition to the MDR1 locus, this large amplified region is likely to harbor additional genes potentially involved in the development of drug resistance. This study represents the first molecular cytogenetic and genomic approach to identifying genomic regions involved in the multidrug‐resistant phenotype of neuroblastoma. These results could lead to the identification of relevant target genes for the development of new therapeutic modalities.
PLOS ONE | 2015
Annick Mühlethaler-Mottet; Julie Liberman; Kelly Ascenção; Marjorie Flahaut; Katia Balmas Bourloud; Pu Yan; Nicolas Jauquier; Nicole Gross; Jean-Marc Joseph
Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.
BMC Cancer | 2016
Marjorie Flahaut; Nicolas Jauquier; Nadja Chevalier; Katya Nardou; Katia Balmas Bourloud; Jean-Marc Joseph; David Barras; Christian Widmann; Nicole Gross; Raffaele Renella; Annick Mühlethaler-Mottet
BackgroundThe successful targeting of neuroblastoma (NB) by associating tumor-initiating cells (TICs) is a major challenge in the development of new therapeutic strategies. The subfamily of aldehyde dehydrogenases 1 (ALDH1) isoenzymes, which comprises ALDH1A1, ALDH1A2, and ALDH1A3, is involved in the synthesis of retinoic acid, and has been identified as functional stem cell markers in diverse cancers. By combining serial neurosphere passages with gene expression profiling, we have previously identified ALDH1A2 and ALDH1A3 as potential NB TICs markers in patient-derived xenograft tumors. In this study, we explored the involvement of ALDH1 isoenzymes and the related ALDH activity in NB aggressive properties.MethodsALDH activity and ALDH1A1/A2/A3 expression levels were measured using the ALDEFLUOR™ kit, and by real-time PCR, respectively. ALDH activity was inhibited using the specific ALDH inhibitor diethylaminobenzaldehyde (DEAB), and ALDH1A3 gene knock-out was generated through the CRISPR/Cas9 technology.ResultsWe first confirmed the enrichment of ALDH1A2 and ALDH1A3 mRNA expression in NB cell lines and patient-derived xenograft tumors during neurosphere passages. We found that high ALDH1A1 expression was associated with less aggressive NB tumors and cell lines, and correlated with favorable prognostic factors. In contrast, we observed that ALDH1A3 was more widely expressed in NB cell lines and was associated with poor survival and high-risk prognostic factors. We also identified an important ALDH activity in various NB cell lines and patient-derived xenograft tumors. Specific inhibition of ALDH activity with diethylaminobenzaldehyde (DEAB) resulted in a strong reduction of NB cell clonogenicity, and TIC self-renewal potential, and partially enhanced NB cells sensitivity to 4-hydroxycyclophosphamide. Finally, the specific knock-out of ALDH1A3 via CRISPR/Cas9 gene editing reduced NB cell clonogenicity, and mediated a cell type-dependent inhibition of TIC self-renewal properties.ConclusionsTogether our data uncover the participation of ALDH enzymatic activity in the aggressive properties and 4-hydroxycyclophosphamide resistance of NB, and show that the specific ALDH1A3 isoenzyme increases the aggressive capacities of a subset of NB cells.