Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marjorie Flahaut is active.

Publication


Featured researches published by Marjorie Flahaut.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Transcriptome of a mouse kidney cortical collecting duct cell line: effects of aldosterone and vasopressin.

Maya Robert-Nicoud; Marjorie Flahaut; Jean-Marc Elalouf; Marie Nicod; Miguel Salinas; Marcelle Bens; Alain Doucet; Patrick Wincker; François Artiguenave; Jean-Daniel Horisberger; Alain Vandewalle; Bernard C. Rossier; Dmitri Firsov

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCDcl4) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCDcl4 cell line either by Northern blot hybridization or reverse transcription–PCR. The hepatocyte nuclear transcription factor HNF-3-α (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.


PLOS ONE | 2007

The chemokine receptor CXCR4 strongly promotes neuroblastoma primary tumour and metastatic growth, but not invasion.

Roland Meier; Annick Mühlethaler-Mottet; Marjorie Flahaut; Aurélie Coulon; Carlo Fusco; Fawzia Louache; Katya Auderset; Katia Balmas Bourloud; Estelle Daudigeos; Curzio Rüegg; Gilles Vassal; Nicole Gross; Jean-Marc Joseph

Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers.


Molecular Cancer | 2008

Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells

Annick Mühlethaler-Mottet; Roland Meier; Marjorie Flahaut; Katia Balmas Bourloud; Katya Nardou; Jean-Marc Joseph; Nicole Gross

BackgroundHistone deacetylase inhibitors (HDACi) are a new class of promising anti-tumour agent inhibiting cell proliferation and survival in tumour cells with very low toxicity toward normal cells. Neuroblastoma (NB) is the second most common solid tumour in children still associated with poor outcome in higher stages and, thus NB strongly requires novel treatment modalities.ResultsWe show here that the HDACi Sodium Butyrate (NaB), suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA) strongly reduce NB cells viability. The anti-tumour activity of these HDACi involved the induction of cell cycle arrest in the G2/M phase, followed by the activation of the intrinsic apoptotic pathway, via the activation of the caspases cascade. Moreover, HDACi mediated the activation of the pro-apoptotic proteins Bid and BimEL and the inactivation of the anti-apoptotic proteins XIAP, Bcl-xL, RIP and survivin, that further enhanced the apoptotic signal. Interestingly, the activity of these apoptosis regulators was modulated by several different mechanisms, either by caspases dependent proteolytic cleavage or by degradation via the proteasome pathway. In addition, HDACi strongly impaired the hypoxia-induced secretion of VEGF by NB cells.ConclusionHDACi are therefore interesting new anti-tumour agents for targeting highly malignant tumours such as NB, as these agents display a strong toxicity toward aggressive NB cells and they may possibly reduce angiogenesis by decreasing VEGF production by NB cells.


Journal of Biological Chemistry | 2002

Respective Roles of Calcitonin Receptor-like Receptor (CRLR) and Receptor Activity-modifying Proteins (RAMP) in Cell Surface Expression of CRLR/RAMP Heterodimeric Receptors

Marjorie Flahaut; Bernard C. Rossier; Dmitri Firsov

Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii)N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requiresN-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction ofN-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.


PLOS ONE | 2012

Involvement of the CXCR7/CXCR4/CXCL12 Axis in the Malignant Progression of Human Neuroblastoma

Julie Liberman; Hervé Sartelet; Marjorie Flahaut; Annick Mühlethaler-Mottet; Aurélie Coulon; Carine Nyalendo; Gilles Vassal; Jean-Marc Joseph; Nicole Gross

Neuroblastoma (NB) is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a regulator of CXCR4/CXCL12-mediated signaling in NB.


BMC Cancer | 2006

Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

Annick Mühlethaler-Mottet; Marjorie Flahaut; Katia Balmas Bourloud; Katya Auderset; Roland Meier; Jean-Marc Joseph; Nicole Gross

BackgroundNeuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified.MethodsNB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting.ResultsSub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs.ConclusionHDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas.


The EMBO Journal | 2002

A novel vasopressin-induced transcript promotes MAP kinase activation and ENaC downregulation

Marie Nicod; Stéphanie Michlig; Marjorie Flahaut; Miguel Salinas; Nicole Fowler Jaeger; Jean-Daniel Horisberger; Bernard C. Rossier; Dmitri Firsov

In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin‐induced transcript (VIT32) that encodes for a 142 amino acid vasopressin‐induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co‐injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.


Apoptosis | 2006

Persistent inhibition of FLIPL expression by lentiviral small hairpin RNA delivery restores death-receptor-induced apoptosis in neuroblastoma cells

Marjorie Flahaut; Annick Mühlethaler-Mottet; Katya Auderset; K. Balmas Bourloud; Roland Meier; M. Beck Popovic; Jean-Marc Joseph; Nicole Gross

Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIPL, a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIPL expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIPL protein and fully reversed FLIPL-mediated TRAIL resistance. Moreover, interference with endogenous FLIPL and FLIPS significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.


Genes, Chromosomes and Cancer | 2006

Molecular cytogenetic characterization of doxorubicin-resistant neuroblastoma cell lines: Evidence that acquired multidrug resistance results from a unique large amplification of the 7q21 region

Marjorie Flahaut; Annick Mühlethaler-Mottet; Danielle Martinet; Sarah Fattet; Katia Balmas Bourloud; Katya Auderset; Roland Meier; Nathalie Besuchet Schmutz; Olivier Delattre; Jean-Marc Joseph; Nicole Gross

Neuroblastoma is a heterogeneous neural crest–derived embryonic childhood neoplasm that is the second most common solid tumor found in children. Despite recent advances in combined therapy, the overall survival of patients with high‐stage disease has not improved in the last decades. Treatment failure is in part attributed to multidrug resistance. To address the mechanisms involved in the development of multidrug resistance, we have generated two doxorubicin‐resistant neuroblastoma cell lines (IGRN‐91R and LAN‐1R). These cells were shown to overexpress the MDR1 gene coding for the P‐glycoprotein and were resistant to other MDR1‐ and non‐MDR1‐substrate drugs. Indeed, the MDR1 inhibitor verapamil only partially restored sensitivity to drugs, confirming that P‐glycoprotein‐mediated drug efflux was not responsible for 100% resistance. High‐resolution and array‐based comparative genomic hybridization analyses revealed the presence of an amplicon in the 7q21 region as the unique genomic alteration common to both doxorubicin‐resistant cell lines. In addition to the MDR1 locus, this large amplified region is likely to harbor additional genes potentially involved in the development of drug resistance. This study represents the first molecular cytogenetic and genomic approach to identifying genomic regions involved in the multidrug‐resistant phenotype of neuroblastoma. These results could lead to the identification of relevant target genes for the development of new therapeutic modalities.


Cell Death and Disease | 2011

Individual caspase-10 isoforms play distinct and opposing roles in the initiation of death receptor-mediated tumour cell apoptosis

Annick Mühlethaler-Mottet; Marjorie Flahaut; K Balmas Bourloud; Katya Nardou; Aurélie Coulon; Julie Liberman; M Thome; Nicole Gross

The cysteine protease caspase-8 is an essential executioner of the death receptor (DR) apoptotic pathway. The physiological function of its homologue caspase-10 remains poorly understood, and the ability of caspase-10 to substitute for caspase-8 in the DR apoptotic pathway is still controversial. Here, we analysed the particular contribution of caspase-10 isoforms to DR-mediated apoptosis in neuroblastoma (NB) cells characterised by their resistance to DR signalling. Silencing of caspase-8 in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive NB cells resulted in complete resistance to TRAIL, which could be reverted by overexpression of caspase-10A or -10D. Overexpression experiments in various caspase-8-expressing tumour cells also demonstrated that caspase-10A and -10D isoforms strongly increased TRAIL and FasL sensitivity, whereas caspase-10B or -10G had no effect or were weakly anti-apoptotic. Further investigations revealed that the unique C-terminal end of caspase-10B was responsible for its degradation by the ubiquitin–proteasome pathway and for its lack of pro-apoptotic activity compared with caspase-10A and -10D. These data highlight in several tumour cell types, a differential pro- or anti-apoptotic role for the distinct caspase-10 isoforms in DR signalling, which may be relevant for fine tuning of apoptosis initiation.

Collaboration


Dive into the Marjorie Flahaut's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marc Joseph

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Meier

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie Liberman

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Katya Nardou

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge