Katia Boutourlinsky
Pierre-and-Marie-Curie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katia Boutourlinsky.
Molecular Psychiatry | 2012
Silviana Laura Diaz; Stéphane Doly; Nicolas Narboux-Nême; Sébasatien Fernández; Pierre Mazot; Sophie M. Banas; Katia Boutourlinsky; Imane Moutkine; Arnauld Belmer; Anne Roumier; Luc Maroteaux
The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT2B receptors. Conversely, direct agonist stimulation of 5-HT2B receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT2B receptors and (iii) a selective 5-HT2B agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT2B receptors. The 5-HT2B receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT2B receptor should be considered as a new tractable target in the combat against depression.
PLOS ONE | 2009
Stéphane Doly; Jesus Bertran-Gonzalez; Jacques Callebert; Alexandra Bruneau; Sophie M. Banas; Arnauld Belmer; Katia Boutourlinsky; Denis Hervé; Jean-Marie Launay; Luc Maroteaux
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA. We show here that 5-HT2B −/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects. These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.
Neuropsychopharmacology | 2011
Sophie M. Banas; Stéphane Doly; Katia Boutourlinsky; Silvina L. Diaz; Arnauld Belmer; Jacques Callebert; Corinne Collet; Jean-Marie Launay; Luc Maroteaux
The now-banned anorectic molecule, dexfenfluramine, promotes serotonin release through a serotonin transporter-dependent mechanism, and it has been widely prescribed for the treatment of obesity. Previous studies have identified that 5-HT2B receptors have important roles in dexfenfluramine side effects, that is, pulmonary hypertension, plasma serotonin level regulation, and valvulopathy. We thus investigated a putative contribution of 5-HT2B receptors in dexfenfluramine-dependent feeding behavior in mice. Interestingly, the hypophagic response to dexfenfluramine (3–10 mg/kg) observed in wild-type mice (1–4 h) was eliminated in mice lacking 5-HT2B receptors (5-HT2B−/−). These findings were further validated by the lack of hypophagic response to dexfenfluramine in wild-type mice treated with RS127445, a highly selective and potent antagonist (pKi=8.22±0.24). Using microdialysis, we observed that in 5-HT2B−/− awake mice, the dexfenfluramine-induced hypothalamic peak of serotonin release (1 h) was strongly reduced (fourfold) compared with wild type. Moreover, using hypothalamic synaptosomes, we established the serotonergic neuron autonomous properties of this effect: a strong serotonin release was observed upon dexfenfluramine stimulation of synaptosome preparation from wild type but not from mice lacking active 5-HT2B receptors. These findings strongly suggest that activation of presynaptic 5-HT2B receptors is a limiting step in the serotonin transporter dependant-releasing effect of dexfenfluramine, whereas other serotonin receptors act downstream with respect to feeding behavior.
Molecular Pharmacology | 2013
Arnauld Belmer; Stéphane Doly; Vincent Setola; Sophie M. Banas; Imane Moutkine; Katia Boutourlinsky; Terry P. Kenakin; Luc Maroteaux
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family.
European Neuropsychopharmacology | 2016
Silvina L. Diaz; Nicolas Narboux-Nême; Katia Boutourlinsky; Stéphane Doly; Luc Maroteaux
Depressive disorders are among the most prevalent neuropsychiatric dysfunctions worldwide, with high rates of resistance to antidepressant treatment. Genetic factors clearly contribute to the manifestation of depression as well as to the response to antidepressants. Transgenic mouse models appear as seminal tools to disentangle this complex disorder. Here, we analyzed new key aspects of the phenotype of knock-out mice for the gene encoding the serotonin 2B receptor (Htr(2B)(-/-)), including basal phenotype, ability to develop a depressive-like phenotype upon chronic isolation, and effect of chronic exposure to fluoxetine on chronically stressed Htr(2B)(-/-) mice. We find, here, that Htr(2B)(-/-) mice display an antidepressant-like phenotype, which includes reduced latency to feed in the novelty suppressed feeding test, basal increase in hippocampal BDNF levels, no change in TrkB and p75 protein levels, and an increased preference for sucrose consumption compared to wild type (Htr(2B)(+/+)) mice. Nevertheless, we show that these mice can develop depressive-like behaviors when socially isolated during four weeks. Selective serotonin reuptake inhibitors (SSRI) have been previously shown to be ineffective in non-stressed Htr(2B)(-/-) mice. We evaluated, here, the effects of the SSRI fluoxetine in chronically stressed Htr(2B)(-/-) mice and similarly no behavioral or plastic effect was induced by this antidepressant. All together, these results highlight the suitability to study resistance to SSRI antidepressants of this mouse model displaying panoply of conditions among which behavioral, neurotrophic and plastic causative factors can be analyzed.
Journal of Hypertension | 2015
Estelle Ayme-Dietrich; Halim Marzak; Roland Lawson; Walid Mokni; Olivia Wendling; Roy Combe; Julien Becker; Lahcen El Fertak; Marie-France Champy; Rachel Matz; Ramaroson Andriantsitohaina; Stéphane Doly; Katia Boutourlinsky; Luc Maroteaux; Laurent Monassier
Objective: Left-ventricular hypertrophy and interstitial fibrosis are the main pathophysiological factors of heart failure with preserved ejection fraction. Blockade of the serotonin 5-HT2B receptor (5-HT2BR) has been shown to reduce cardiac hypertrophy, oxidative stress, and extracellular cell matrix activation. In this study, we evaluated the effects of the 5-HT2BR blockade, on hemodynamic and cardiac remodeling, in spontaneously hypertensive rats (SHRs) that display a diastolic dysfunction with preserved ejection fraction. Method: Thirty-seven-week-old SHRs were randomized in four groups receiving either saline, the selective 5-HT2BR antagonist RS-127445 (1 mg/kg per day), a calcium channel blocker nicardipine (6 mg/kg per day), or RS-127445 + nicardipine. During the 14 weeks of treatment period, cardiac function and blood pressure were monitored by echocardiography and tail-cuff. Finally, electrocardiograms and invasive hemodynamics were obtained before blood collection. Heart was analyzed for morphology and mRNA expression. A complementary study evaluated the cardiac and vascular effects of serotonin on wild-type and mice knockout for the 5-HT2BR (Htr2B−/−) and/or the 5-HT2AR (Htr2A−/−). Results: Despite the left ventricular 5-HT2BR overexpression, 5-HT2BR blockade by RS-127445 did not affect left ventricular hypertrophy and fibrosis in SHRs. This antagonist did not improve diastolic dysfunction, neither alone nor in combination with nicardipine, although it induced plasma brain natriuretic peptide decrease. Moreover, RS-127445 amplified subendocardial fibrosis and favored left ventricular dilatation. Finally, a subendocardial left ventricular fibrosis was induced by chronic serotonin in wild-type mice, which was increased in Htr2B−/− animals, but prevented in Htr2A−/− and Htr2A/2B−/− mice, and could be explained by a contribution of the endothelial 5-HT2BRs to coronary vasodilatation. Conclusion: This work is the first to identify a cardioprotective function of the 5-HT2BR in an integrated model of diastolic dysfunction with preserved ejection fraction.
Journal of Biological Chemistry | 2015
Arnaud Monteil; Patrick Chausson; Katia Boutourlinsky; Alexandre Mezghrani; Sylvaine Huc-Brandt; Iulia Blesneac; Isabelle Bidaud; Céline Lemmers; Nathalie Leresche; Régis C. Lambert; Philippe Lory
Background: Novel strategies are needed to characterize the properties of T-type (Cav3) calcium channel isoforms. Results: The I-II loop of the Cav3.2 protein potently inhibits both recombinant and neuronal Cav3.1 and Cav3.2 channels. Conclusion: This I-II loop region can be used to selectively silence Cav3.1/Cav3.2 channels. Significance: This study reveals a new approach to differentiate among the activity of native Cav3 channels. Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.
Faculty of Health | 2013
Arnauld Belmer; Stéphane Doly; Vincent Setola; Sophie M. Banas; Imane Moutkine; Katia Boutourlinsky; Terry P. Kenakin; Luc Maroteaux
Faculty of Health; Institute of Health and Biomedical Innovation | 2012
Silvina L. Diaz; Stéphane Doly; Nicolas Narboux-Nême; Sebastian P. Fernandez; P. Mazot; Sophie M. Banas; Katia Boutourlinsky; Imane Moutkine; Arnauld Belmer; Anne Roumier; Luc Maroteaux
Faculty of Health; Institute of Health and Biomedical Innovation | 2011
Sophie M. Banas; Stéphane Doly; Katia Boutourlinsky; Silvina L. Diaz; Arnauld Belmer; Jacques Callebert; Corinne Collet; Jean-Marie Launay; Luc Maroteaux