Katia Vermoesen
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katia Vermoesen.
The Journal of Neuroscience | 2011
Dimitri De Bundel; Anneleen Schallier; Ellen Loyens; Ruani N. Fernando; Hirohisa Miyashita; Joeri Van Liefferinge; Katia Vermoesen; Shiro Bannai; Hideyo Sato; Yvette Michotte; Ilse Smolders; Ann Massie
System xc− exchanges intracellular glutamate for extracellular cystine, giving it a potential role in intracellular glutathione synthesis and nonvesicular glutamate release. We report that mice lacking the specific xCT subunit of system xc− (xCT−/−) do not have a lower hippocampal glutathione content, increased oxidative stress or brain atrophy, nor exacerbated spatial reference memory deficits with aging. Together these results indicate that loss of system xc− does not induce oxidative stress in vivo. Young xCT−/− mice did however display a spatial working memory deficit. Interestingly, we observed significantly lower extracellular hippocampal glutamate concentrations in xCT−/− mice compared to wild-type littermates. Moreover, intrahippocampal perfusion with system xc− inhibitors lowered extracellular glutamate, whereas the system xc− activator N-acetylcysteine elevated extracellular glutamate in the rat hippocampus. This indicates that system xc− may be an interesting target for pathologies associated with excessive extracellular glutamate release in the hippocampus. Correspondingly, xCT deletion in mice elevated the threshold for limbic seizures and abolished the proconvulsive effects of N-acetylcysteine. These novel findings sustain that system xc− is an important source of extracellular glutamate in the hippocampus. System xc− is required for optimal spatial working memory, but its inactivation is clearly beneficial to decrease susceptibility for limbic epileptic seizures.
The FASEB Journal | 2011
Ann Massie; Anneleen Schallier; Seong Woong Kim; Ruani Fernando; Sho Kobayashi; Heike Beck; Dimitri De Bundel; Katia Vermoesen; Shiro Bannai; Ilse Smolders; Marcus Conrad; Nikolaus Plesnila; Hideyo Sato; Yvette Michotte
Malfunctioning of system xc–, responsible for exchanging intracellular glutamate for extracellular cystine, can cause oxidative stress and excitotoxicity, both important phenomena in the pathogenesis of Parkinsons disease (PD). We used mice lacking xCT (xCT_/_ mice), the specific subunit of system xc˜, to investigate the involvement of this antiporter in PD. Although cystine that is imported via system xc˜ is reduced to cysteine, the rate‐limiting substrate in the synthesis of glutathione, deletion of xCT did not result in decreased glutathione levels in striatum. Accordingly, no signs of increased oxidative stress could be observed in striatum or substantia nigra of xCT_/_ mice. In sharp contrast to expectations, xCT_/_ mice were less susceptible to 6‐hydroxydopamine (6‐OHDA)‐induced neurodegeneration in the substantia nigra pars compacta compared to their age‐matched wild‐type littermates. This reduced sensitivity to a PD‐inducing toxin might be related to the decrease of 70% in striatal extracellular glutamate levels that was observed in mice lacking xCT. The current data point toward system xc˜ as a possible target for the development of new pharmacotherapies for the treatment of PD and emphasize the need to continue the search for specific ligands for system xc˜.—Massie, A., Schallier, A., Kim, S. W., Fernando, R., Kobayashi, S., Beck, H., De Bundel, D., Vermoesen, K., Bannai, S., Smolders, I., Conrad, M., Plesnila, N., Sato, H., Michotte, Y. Dopaminergic neurons of system xc “‐deficient mice are highly protected against 6‐hydroxydopamine‐induced toxicity. FASEB J. 25, 1359–1369 (2011). www.fasebj.org
Neuroreport | 2008
Ann Massie; Anneleen Schallier; Birgit Mertens; Katia Vermoesen; Shiro Bannai; Hideyo Sato; Ilse Smolders; Yvette Michotte
Altered glutamate signaling is associated with Parkinsons disease. To study the involvement of the cystine/glutamate antiporter in the pathogenesis of Parkinsons disease, we developed new polyclonal antibodies recognizing xCT, the specific subunit of this antiporter. The striatal xCT protein expression level was investigated in a hemi-Parkinson rat model, using semiquantitative western blotting. We observed time-dependent changes after a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway with increased expression levels in the deafferented striatum after 3 weeks. Twelve weeks postlesion, expression levels returned to normal. These data suggest, for the first time, an involvement of the cystine/glutamate antiporter in determining the aberrant glutamate neurotransmission in the striatum of a parkinsonian brain.
Neurochemistry International | 2010
Ann Massie; Stéphanie Goursaud; Anneleen Schallier; Katia Vermoesen; Charles K. Meshul; Emmanuel Hermans; Yvette Michotte
Striatal dopamine loss in Parkinsons disease is accompanied by a dysregulation of corticostriatal glutamatergic neurotransmission. Within this study, we investigated striatal expression and activity of the glial high-affinity Na(+)/K(+)-dependent glutamate transporters, GLT-1 and GLAST, in the 6-hydroxydopamine hemi-Parkinson rat model at different time points after unilateral 6-hydroxydopamine injection into the medial forebrain bundle. Using semi-quantitative Western blotting and an ex vivo D-[(3)H]-aspartate uptake assay, we showed a time-dependent bilateral effect of unilateral 6-hydroxydopamine lesioning on the expression as well as activity of GLT-1. At 3 and 12 weeks post-lesion, striatal GLT-1 function was bilaterally upregulated whereas at 5 weeks there was no change. Even though our data do not allow a straightforward conclusion as for the role of glutamate transporters in the pathogenesis of the disease, they do clearly demonstrate a link between disturbed glutamatergic neurotransmission and glutamate transporter functioning in the striatum of a rat model for Parkinsons disease.
Epilepsia | 2012
Katia Vermoesen; Ann Massie; Ilse Smolders; Ralph Clinckers
Purpose: For a long time, antidepressants have been thought to possess proconvulsant properties. This assumption, however, remains controversial, since anticonvulsant effects have been attributed to certain antidepressants. To date, it remains unclear which antidepressants can be used for the treatment of depression in patients with epilepsy. In this respect, studies investigating the convulsant liability of antidepressants in a chronic epilepsy model can give valuable information. The present study was designed to determine the seizure liability of citalopram and reboxetine in the kainic acid–induced post–status epilepticus model for temporal lobe epilepsy.
Epilepsy & Behavior | 2011
Katia Vermoesen; Ann-Sophie K. Serruys; Ellen Loyens; Tatiana Afrikanova; Ann Massie; Anneleen Schallier; Yvette Michotte; Alexander D. Crawford; Camila V. Esguerra; Peter de Witte; Ilse Smolders; Ralph Clinckers
In the past, antidepressants have been thought to possess proconvulsant properties. This assumption remains controversial, however, because anticonvulsant effects have been attributed to certain antidepressants. To date, it remains unclear which antidepressants can be used for the treatment of patients with epilepsy with depression. The present study was designed to determine the anticonvulsant and/or proconvulsant effects of three antidepressants (citalopram, reboxetine, bupropion) against pilocarpine- and pentylenetetrazole-induced acute seizures in larval zebrafish and mice. In zebrafish, all antidepressants were anticonvulsant in the pentylenetetrazole model. In addition, citalopram was anticonvulsant in the zebrafish pilocarpine model, whereas reboxetine and bupropion were without significant effect. In mice all three antidepressants increased some thresholds for pentylenetetrazole-induced convulsive-like behaviors at varying doses, whereas thresholds for pilocarpine-induced convulsive-like behaviors were generally lowered, particularly at the highest doses tested. In general we conclude that the convulsant liability of antidepressants is model and concentration dependent.
Neurotherapeutics | 2012
Jeanelle Portelli; Leen Thielemans; Luc Ver Donck; Ellen Loyens; Jessica Coppens; Najat Aourz; Jeroen Aerssens; Katia Vermoesen; Ralph Clinckers; Anneleen Schallier; Yvette Michotte; Dieder Moechars; Graham L. Collingridge; Zuner A. Bortolotto; Ilse Smolders
Ghrelin is a pleiotropic neuropeptide that has been recently implicated in epilepsy. Animal studies performed to date indicate that ghrelin has anticonvulsant properties; however, its mechanism of anticonvulsant action is unknown. Here we show that the anticonvulsant effects of ghrelin are mediated via the growth hormone secretagogue receptor (GHSR). To our surprise, however, we found that the GHSR knockout mice had a higher seizure threshold than their wild-type littermates when treated with pilocarpine. Using both in vivo and in vitro models, we further discovered that inverse agonism and desensitization/internalization of the GHSR attenuate limbic seizures in rats and epileptiform activity in hippocampal slices. This constitutes a novel mechanism of anticonvulsant action, whereby an endogenous agonist reduces the activity of a constitutively active receptor.
Epilepsy Research | 2010
Katia Vermoesen; Ilse Smolders; Ann Massie; Yvette Michotte; Ralph Clinckers
In the present study the effectiveness of different diazepam-ketamine combinations to control kainic acid-induced status epilepticus in rats was evaluated. We show that electrographic monitoring is mandatory to enable reliable assessment of status epilepticus control as the number of false positives is extremely high when status epilepticus control is only behaviourally assessed. Diazepam and ketamine synergistically blocked all electrographical seizure activity.
Neurochemistry International | 2010
Ann Massie; Anneleen Schallier; Katia Vermoesen; Lutgarde Arckens; Yvette Michotte
Parkinsons disease is characterized by disturbed glutamatergic neurotransmission in the striatum. Important mediators of extracellular glutamate levels are the vesicular glutamate transporters VGLUT1 and VGLUT2 in respectively corticostriatal and thalamostriatal afferents, next to the high-affinity Na(+)/K(+)-dependent glutamate transporters and the cystine/glutamate antiporter. In the present study, we compared bilateral striatal VGLUT1 and VGLUT2 protein expression as well as VGLUT1 and VGLUT2 transcript levels in the neocortex and parafascicular nucleus of hemi-Parkinson rats at different time intervals post unilateral 6-OHDA injection into the medial forebrain bundle versus controls. Three weeks post-injection we detected increased striatal VGLUT1 expression together with decreased VGLUT2 expression. On the other hand, after twelve weeks, the expression of VGLUT1 was decreased in hemi-Parkinson rats whereas the striatal expression of VGLUT2 was comparable to control rats. No effect could be seen on VGLUT transcript levels in the respective projection areas at any time. In conclusion, we observed a biphasic and bilateral change in the protein expression levels of both VGLUTs in the striatum of hemi-Parkinson rats indicative for a different and time-dependent change in glutamatergic neurotransmission from the two types of striatal afferents.
Journal of Neurochemistry | 2010
Ralph Clinckers; Tine Zgavc; Katia Vermoesen; Alfred Meurs; Yvette Michotte; Ilse Smolders
J. Neurochem. (2010) 115, 1595–1607.