Katie A. Howell
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katie A. Howell.
Journal of Virology | 2016
Frederick W. Holtsberg; Sergey Shulenin; Hong Vu; Katie A. Howell; Sonal J. Patel; Bronwyn M. Gunn; Marcus Karim; Jonathan R. Lai; Julia C. Frei; Elisabeth K. Nyakatura; Larry Zeitlin; Robin Douglas; Marnie L. Fusco; Jeffrey W. Froude; Erica Ollmann Saphire; Andrew S. Herbert; Ariel S. Wirchnianski; Calli M. Lear-Rooney; Galit Alter; John M. Dye; Pamela J. Glass; Kelly L. Warfield; M. Javad Aman
ABSTRACT The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines.
Cell Reports | 2016
Katie A. Howell; Xiangguo Qiu; Jennifer M. Brannan; Christopher Bryan; Edgar Davidson; Frederick W. Holtsberg; Anna Z. Wec; Sergey Shulenin; Julia E. Biggins; Robin Douglas; Sven Enterlein; Hannah L. Turner; Jesper Pallesen; Charles D. Murin; Shihua He; Andrea Kroeker; Hong Vu; Andrew S. Herbert; Marnie L. Fusco; Elisabeth K. Nyakatura; Jonathan R. Lai; Zhen Yong Keck; Steven K. H. Foung; Erica Ollmann Saphire; Larry Zeitlin; Andrew B. Ward; Kartik Chandran; Benjamin J. Doranz; Gary P. Kobinger; John M. Dye
Summary Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.
Journal of Virology | 2016
Zhen-Yong Keck; Sven Enterlein; Katie A. Howell; Hong Vu; Sergey Shulenin; Kelly L. Warfield; Jeffrey W. Froude; Nazli Araghi; Robin Douglas; Julia E. Biggins; Calli M. Lear-Rooney; Ariel S. Wirchnianski; Patrick Lau; Yong Wang; Andrew S. Herbert; John M. Dye; Pamela J. Glass; Frederick W. Holtsberg; Steven K. H. Foung; M. Javad Aman
ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus. Since the nature of future outbreaks cannot be predicted, there is an urgent need for therapeutics with broad protective efficacy against multiple filoviruses. Here we describe a set of monoclonal antibodies cross-reactive with multiple filovirus species. These antibodies target novel conserved epitopes within the envelope glycoprotein and exhibit protective efficacy in mice. We further present novel concepts for combination of cross-reactive antibodies against multiple epitopes that show enhanced efficacy compared to monotherapy and provide complete protection in mice. These findings set the stage for further evaluation of these antibodies in nonhuman primates and development of effective pan-filovirus immunotherapeutics for use in future outbreaks.
Science | 2016
Anna Z. Wec; Elisabeth K. Nyakatura; Andrew S. Herbert; Katie A. Howell; Frederick W. Holtsberg; Russell R. Bakken; Eva Mittler; John R. Christin; Sergey Shulenin; Rohit K. Jangra; Sushma Bharrhan; Ana I. Kuehne; Zachary A. Bornholdt; Andrew I. Flyak; Erica Ollmann Saphire; James E. Crowe; M. Javad Aman; John M. Dye; Jonathan R. Lai; Kartik Chandran
Treating Ebola with a Trojan horse The recent major Ebola virus outbreak in West Africa high-lighted the need for effective therapeutics against this and other filoviruses. Neutralizing ebolaviruses with antibodies is a challenge because the viruses bind their entry receptor, NPC1, inside the cell within endosomes rather than on the cell surface. Furthermore, enzymes in endosomes cleave the Ebola virus surface glycoprotein (GP) to reveal its receptor binding site. Wec et al. now report a bispecific antibody strategy targeting all known ebolaviruses that overcomes this problem (see the Perspective by Labrijn and Parren). They coupled an antibody specific for a conserved, surface-exposed epitope of GP to antibodies that recognize either NPC1 or the NPC1 binding site on GP. Treating mice therapeutically with these antibodies allowed them to survive otherwise lethal ebolavirus infection. Science, this issue p. 350; see also p. 284 Bispecific antibodies show therapeutic efficacy against ebolaviruses in mice. There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor–binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such “Trojan horse” bispecific antibodies have potential as broad antifilovirus immunotherapeutics.
The Journal of Infectious Diseases | 2018
Kelly L. Warfield; Katie A. Howell; Hong Vu; Joan B. Geisbert; Gary Wong; Sergey Shulenin; Stephanie Sproule; Frederick W. Holtsberg; Daisy W. Leung; Gaya K. Amarasinghe; Dana L. Swenson; Sina Bavari; Gary P. Kobinger; Thomas W. Geisbert; M. Javad Aman
Background Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.
The Journal of Infectious Diseases | 2018
Mable Chan; Frederick W. Holtsberg; Hong Vu; Katie A. Howell; Anders Leung; Evelyn Van der Hart; Paul H. Walz; M. Javad Aman; Shantha Kodihalli; Darwyn Kobasa
Background Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.
Cell | 2017
Xuelian Zhao; Katie A. Howell; Shihua He; Jennifer M. Brannan; Anna Z. Wec; Edgar Davidson; Hannah L. Turner; Chi I. Chiang; Lin Lei; J. Maximilian Fels; Hong Vu; Sergey Shulenin; Ashley N. Turonis; Ana I. Kuehne; Guodong Liu; Mi Ta; Yimeng Wang; Christopher Sundling; Yongli Xiao; Jennifer S. Spence; Benjamin J. Doranz; Frederick W. Holtsberg; Andrew B. Ward; Kartik Chandran; John M. Dye; Xiangguo Qiu; Yuxing Li; M. Javad Aman
Cell Reports | 2017
Katie A. Howell; Jennifer M. Brannan; Christopher Bryan; Andrew McNeal; Edgar Davidson; Hannah L. Turner; Hong Vu; Sergey Shulenin; Shihua He; Ana I. Kuehne; Andrew S. Herbert; Xiangguo Qiu; Benjamin J. Doranz; Frederick W. Holtsberg; Andrew B. Ward; John M. Dye; M. Javad Aman
Archive | 2016
Mohammad Javad Aman; Frederick W. Holtsberg; Sven G. Enterlein; Katie A. Howell; Zhen-Yong Keck; Steven K. H. Foung
Archive | 2016
Mohammad Javad Aman; Frederick W. Holtsberg; Sven G. Enterlein; Katie A. Howell
Collaboration
Dive into the Katie A. Howell's collaboration.
United States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputsUnited States Army Medical Research Institute of Infectious Diseases
View shared research outputs