Katie D. Nizio
University of Technology, Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katie D. Nizio.
PLOS ONE | 2014
Shari L. Forbes; Katelynn Perrault; Pierre-Hugues Stefanuto; Katie D. Nizio; Jean-François Focant
The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for detecting and identifying trace levels of VOCs, particularly ethers, which are rarely reported as decomposition VOCs.
Chromatographia | 2015
Katelynn Perrault; Katie D. Nizio; Shari L. Forbes
Decomposition odour analysis involves the chemical profiling of volatile organic compounds produced by decomposing remains. This is important for areas of forensic science that rely on the detection of decomposition odour such as insect attraction to carrion, positive alerts of cadaver dogs to decomposing remains, and the development of field instrumentation for search and recovery procedures. Traditionally decomposition odour analysis has been performed using gas chromatography–quadrupole mass spectrometry (GC–qMS); however, the use of comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC–TOFMS) is rapidly becoming more prevalent. The objective of this study was to compare GC–qMS and GC×GC–TOFMS for decomposition odour profiling based on inter-year replicate field studies using decomposing porcine remains. The increased peak capacity, sensitivity and selectivity afforded by GC×GC–TOFMS allowed peak co-elutions, chromatographic artefacts, and dynamic range to be more easily addressed and managed. Furthermore, the software associated with GC×GC–TOFMS provided several additional benefits including improved peak alignment between samples and increased consistency of reported results, overall allowing for additional statistical tests to be applied following data processing. Future GC–qMS results could be improved by implementing some of these software-associated procedures, potentially reducing the magnitude of variation observed between GC–qMS and GC×GC–TOFMS studies. One-dimensional GC analysis may also benefit substantially from coupling with TOFMS detection to provide an indirect increase in peak capacity using deconvolution. However, the wealth of information gained by using GC×GC–TOFMS in decomposition odour profiling is undoubtedly an asset in this field of research.
Journal of Breath Research | 2016
Katie D. Nizio; Katelynn Perrault; A.N. Troobnikoff; Maiken Ueland; S Shoma; J R Iredell; P G Middleton; Shari L. Forbes
Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further facilitate the production of diagnostic tools for the early detection of bacterial lung infections.
Heliyon | 2016
P. Armstrong; Katie D. Nizio; Katelynn Perrault; Shari L. Forbes
Following a mass disaster, it is important that victims are rapidly located as the chances of survival decrease greatly after approximately 48 h. Urban search and rescue (USAR) teams may use a range of tools to assist their efforts but detector dogs still remain one of the most effective search tools to locate victims of mass disasters. USAR teams can choose to deploy human scent dogs (trained to locate living victims) or human remains detection (HRD) dogs (trained to locate deceased victims). However, little is known about the variation between live human scent and postmortem human remains scent and the timeframe during which one type of scent transitions to the other. The aim of the current study was to measure the change in the scent profile of human decomposition analogues during the first 72 h postmortem by measuring the volatile organic compounds (VOCs) that comprise the odour. Three pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface and allowed to decompose under natural conditions. Decomposition odour was sampled frequently up to 75 h postmortem and analysed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 105 postmortem VOCs were identified during the early postmortem period. The VOC profile during the early postmortem period was highly dynamic, changing both hourly and daily. A transition period was observed after 43 h postmortem, where the VOC profile appeared to shift from a distinct antemortem odour to a more generalised postmortem odour. These findings are important in informing USAR teams and their use of detector dogs for disaster victim recovery.
Forensic Science International | 2015
Maiken Ueland; Katie D. Nizio; Shari L. Forbes; Barbara H. Stuart
Textiles are a commonly encountered source of evidence in forensic cases. In the past, most research has been focused on how textiles affect the decomposition process while little attention has been paid to how the decomposition products interact with the textiles. While some studies have shown that the presence of remains will have an effect on the degradation of clothing associated with a decaying body, very little work has been carried out on the specific mechanisms that prevent or delay textile degradation when in contact with decomposing remains. In order to investigate the effect of decomposition fluid on textile degradation, three clothed domestic pig (Sus scrofa domesticus) carcasses were placed on a soil surface, textile specimens were collected over a period of a year and were then analysed using ATR-FTIR spectroscopy and GC-MS. Multivariate statistical analysis was used to analyse the data. Cotton specimens not associated with remains degraded markedly, whereas the samples exposed to decomposition fluids remained relatively intact over the same time frame. An investigation of the decomposition by-products found that the protein-related bands remained stable and unchanged throughout the experiment. Lipid components, on the other hand, demonstrated a significant change; this was confirmed with the use of both ATR-FTIR spectroscopy and GC-MS. Through an advanced statistical approach, information about the decomposition by-products and their characteristics was obtained. There is potential that the lipid profile in a textile specimen could be a valuable tool used in the examination of clothing located at a crime scene.
Australian Journal of Forensic Sciences | 2018
Zaccariah Knobel; Maiken Ueland; Katie D. Nizio; Darshil Patel; Shari L. Forbes
Abstract Cadaver-detection dogs are trained to locate victim remains; however, their training is challenging owing to limited access to human remains. Animal analogues, such as pigs, are typically used as alternative training aids. This project aimed to compare the visual decomposition and volatile organic compound (VOC) profile of human and pig remains in an Australian environment, to determine the suitability of pig remains as human odour analogues for cadaver-detection dog training. Four human cadavers and four pig carcasses were placed in an outdoor environment at the Australian Facility for Taphonomic Experimental Research (AFTER) across two seasons. Decomposition was monitored progressively in summer and winter. VOCs were collected onto sorbent tubes and analysed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry. Visual observations highlighted the differences in decomposition rates, with pig remains progressing through all stages of decomposition, and human remains undergoing differential decomposition and mummification. Chemical and statistical analysis highlighted variations in the composition and abundance of VOCs over time between the odour profiles. This study concluded that the visual decomposition and VOC profile of pig and human remains was dissimilar. However, in cooler conditions the results from each species became more comparable, especially during the early stages of decomposition.
Separations | 2018
Katie D. Nizio; Shari L. Forbes
In cases of suspected arson, a body may be intentionally burnt to cause loss of life, dispose of remains, or conceal identification. A primary focus of a fire investigation, particularly involving human remains, is to establish the cause of the fire; this often includes the forensic analysis of fire debris for the detection of ignitable liquid residues (ILRs). Commercial containers for the collection of fire debris evidence include metal cans, glass jars, and polymer/nylon bags of limited size. This presents a complication in cases where the fire debris consists of an intact, or partially intact, human cadaver. This study proposed the use of a body bag as an alternative sampling container. A method was developed and tested for the collection and analysis of ILRs from burnt porcine remains contained within a body bag using dynamic headspace sampling (using an Easy-VOC™ hand-held manually operated grab-sampler and stainless steel sorbent tubes containing Tenax TA) followed by thermal desorption comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (TD-GC×GC-TOFMS). The results demonstrated that a body bag containing remains burnt with gasoline tested positive for the presence of gasoline, while blank body bag controls and a body bag containing remains burnt without gasoline tested negative. The proposed method permits the collection of headspace samples from burnt remains before the remains are removed from the crime scene, limiting the potential for contamination and the loss of volatiles during transit and storage.
Analytical and Bioanalytical Chemistry | 2016
LaTara Rust; Katie D. Nizio; Shari L. Forbes
Separations | 2016
Katie D. Nizio; Jack Cochran; Shari L. Forbes
Archive | 2015
Rc Bids; Lt Rust; Katie D. Nizio; T Rai; Barbara H. Stuart; Shari L. Forbes