Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie R. Hirsch is active.

Publication


Featured researches published by Katie R. Hirsch.


International Journal of Sports Medicine | 2015

Body Composition, Muscle Quality and Scoliosis in Female Collegiate Gymnasts: A Pilot Study

Eric T. Trexler; Erica J. Roelofs; Katie R. Hirsch

Research has demonstrated an elevated prevalence of body weight concerns and scoliosis among female gymnasts. The purpose of the current pilot study was to evaluate the utility of ultrasonography and dual-energy X-ray absorptiometry (DXA) as practical imaging modalities to measure body composition and spinal curvature variables that may correlate with performance in female collegiate gymnasts (n=15). DXA was used to evaluate body composition and lateral spinal curvature, utilizing a modified Ferguson method. Echo intensity (EI) and cross-sectional area (CSA) of the vastus lateralis were determined from a panoramic cross-sectional ultrasound image. For returning athletes (n=9), performance scores from the previous season were averaged to quantify performance. The average performance score was correlated with lean mass of the arms (R=0.714; P=0.03) and right leg (R=0.680; P=0.04). Performance was not correlated with total mass, fat mass or body fat percentage (P>0.10). Scoliosis was identified in 3 of 15 scans (20%). Echo intensity and CSA of the vastus lateralis were inversely correlated with each other (R=-0.637, P=0.01), but not with other measures of body composition or performance. Results suggest that limb LBM may be a determinant of gymnastics performance, and DXA may provide important health and performance-related information for female collegiate gymnasts.


European Journal of Sport Science | 2017

Effects of pomegranate extract on blood flow and vessel diameter after high-intensity exercise in young, healthy adults

Erica J. Roelofs; Eric T. Trexler; Katie R. Hirsch; Meredith G. Mock

Abstract The effects of pomegranate extract (PE) supplementation were evaluated on high-intensity exercise performance, blood flow, vessel diameter, oxygen saturation (SPO2), heart rate (HR), and blood pressure (BP). In a randomized, crossover design, nineteen recreationally resistance-trained participants were randomly assigned to PE (1000 mg) or placebo (PL), which were consumed 30 min prior to a repeated sprint ability (RSA) test and repetitions to fatigue (RTF) on bench and leg press. The RSA consisted of ten six-second sprints on a friction-loaded cycle ergometer with 30 s recovery. Brachial artery blood flow and vessel diameter were assessed by ultrasound. Blood flow, vessel diameter, SPO2, HR, and BP were assessed at baseline, 30 min post ingestion, immediately post exercise (IPost), and 30 min post exercise (30minPost). With PE, blood flow significantly increased IPost RSA (mean difference = 18.49 mL min−1; P < .05), and IPost and 30minPost RTF (P < .05) according to confidence intervals (CI). Vessel diameter increased significantly 30minPost RSA according to CI and resulted in a significant interaction IPost and 30minPost RTF (P < .05). With PE, according to CI, average and peak power output increased significantly in sprint 5 of the RSA (P < .05). There was no significant difference between PE and PL for bench (P = .25) or leg press (P = .15) repetitions. Acute PE supplementation enhanced vessel diameter and blood flow, suggesting possible exercise performance enhancement from increased delivery of substrates and oxygen. The acute timing and capsule form of PE may be advantageous to athletic populations due to ergogenic effects, taste, and convenience.


Journal of Strength and Conditioning Research | 2016

Effects of Coffee and Caffeine Anhydrous Intake During Creatine Loading

Eric T. Trexler; Erica J. Roelofs; Katie R. Hirsch; Adam M. Persky; Meredith G. Mock

Abstract Trexler, ET, Smith-Ryan, AE, Roelofs, EJ, Hirsch, KR, Persky, AM, and Mock, MG. Effects of coffee and caffeine anhydrous intake during creatine loading. J Strength Cond Res 30(5): 1438–1446, 2016—The purpose of this study was to determine the effect of 5 days of creatine (CRE) loading alone or in combination with caffeine anhydrous (CAF) or coffee (COF) on upper-body and lower-body strength and sprint performance. Physically active males (n = 54; mean ± SD; age = 20.1 ± 2.1 years; weight = 78.8 ± 8.8 kg) completed baseline testing, consisting of 1 repetition maximum (1RM) and repetitions to fatigue with 80% 1RM for bench press and leg press, followed by a repeated sprint test of five, 10-second sprints separated by 60-second rest on a cycle ergometer to determine peak power (PP) and total power (TP). At least 72 hours later, subjects were randomly assigned to supplement with CRE (5 g of CRE monohydrate, 4 times per day; n = 14), CRE + CAF (CRE +300 mg·d−1 of CAF; n = 13), CRE + COF (CRE +8.9 g of COF, yielding 303 mg of CAF; n = 13), or placebo (PLA; n = 14) for 5 days. Serum creatinine (CRN) was measured before and after supplementation, and on day 6, participants repeated pretesting procedures. Strength measures were improved in all groups (p ⩽ 0.05), with no significant time × treatment interactions. No significant interaction or main effects were observed for PP. For TP, a time × sprint interaction was observed (p ⩽ 0.05), with no significant interactions among treatment groups. A time × treatment interaction was observed for serum CRN values (p ⩽ 0.05) that showed increases in all groups except PLA. Four subjects reported mild gastrointestinal discomfort with CRE + CAF, with no side effects reported in other groups. These findings suggest that neither CRE alone nor in combination with CAF or COF significantly affected performance compared with PLA.


Clinical Physiology and Functional Imaging | 2018

Utility of ultrasound for body fat assessment: validity and reliability compared to a multicompartment criterion

Malia N.M. Blue; Eric T. Trexler; Katie R. Hirsch

Measurement of body composition to assess health risk and prevention is expanding. Accurate portable techniques are needed to facilitate use in clinical settings. This study evaluated the accuracy and repeatability of a portable ultrasound (US) in comparison with a four‐compartment criterion for per cent body fat (%Fat) in overweight/obese adults. Fifty‐one participants (mean ± SD; age: 37·2 ± 11·3 years; BMI: 31·6 ± 5·2 kg m−2) were measured for %Fat using US (GE Logiq‐e) and skinfolds. A subset of 36 participants completed a second day of the same measurements, to determine reliability. US and skinfold %Fat were calculated using the seven‐site Jackson–Pollock equation. The Wang 4C model was used as the criterion method for %Fat. Compared to a gold standard criterion, US %Fat (36·4 ± 11·8%; P = 0·001; standard error of estimate [SEE] = 3·5%) was significantly higher than the criterion (33·0 ± 8·0%), but not different than skinfolds (35·3 ± 5·9%; P = 0·836; SEE = 4·5%). US resulted in good reliability, with no significant differences from Day 1 (39·95 ± 15·37%) to Day 2 (40·01 ± 15·42%). Relative consistency was 0·96, and standard error of measure was 0·94%. Although US overpredicted %Fat compared to the criterion, a moderate SEE for US is suggestive of a practical assessment tool in overweight individuals. %Fat differences reported from these field‐based techniques are less than reported by other single‐measurement laboratory methods and therefore may have utility in a clinical setting. This technique may also accurately track changes.


Journal of Strength and Conditioning Research | 2017

Longitudinal Body Composition Changes in NCAA Division I College Football Players

Eric T. Trexler; J. Bryan Mann; Pat A. Ivey; Katie R. Hirsch; Meredith G. Mock

Abstract Trexler, ET, Smith-Ryan, AE, Mann, JB, Ivey, PA, Hirsch, KR, and Mock, MG. Longitudinal body composition changes in NCAA Division I college football players. J Strength Cond Res 31(1): 1–8, 2017—Many athletes seek to optimize body composition to fit the physical demands of their sport. American football requires a unique combination of size, speed, and power. The purpose of the current study was to evaluate longitudinal changes in body composition in Division I collegiate football players. For 57 players (mean ± SD, age = 19.5 ± 0.9 years, height = 186.9 ± 5.7 cm, weight = 107.7 ± 19.1 kg), body composition was assessed via dual-energy x-ray absorptiometry in the off-season (March-Pre), end of off-season (May), mid-July (Pre-Season), and the following March (March-Post). Outcome variables included weight, body fat percentage (BF%), fat mass, lean mass (LM), android and gynoid (GYN) fat, bone mineral content (BMC), and bone mineral density (BMD). For a subset of athletes (n = 13 out of 57), changes over a 4-year playing career were evaluated with measurements taken every March. Throughout a single year, favorable changes were observed for BF% (&Dgr; = −1.3 ± 2.5%), LM (&Dgr; = 2.8 ± 2.8 kg), GYN (&Dgr; = −1.5 ± 3.0%), BMC (&Dgr; = 0.06 ± 0.14 kg), and BMD (&Dgr; = 0.015 ± 0.027 g·cm−2, all p ⩽ 0.05). Across 4 years, weight increased significantly (&Dgr; = 6.6 ± 4.1 kg) and favorable changes were observed for LM (&Dgr; = 4.3 ± 3.0 kg), BMC (&Dgr; = 0.18 ± 0.17 kg), and BMD (&Dgr; = 0.033 ± 0.039 g·cm−2, all p ⩽ 0.05). Similar patterns in body composition changes were observed for linemen and non-linemen. Results indicate that well-trained collegiate football players at high levels of competition can achieve favorable changes in body composition, even late in the career, which may confer benefits for performance and injury prevention.


The Physician and Sportsmedicine | 2016

Metabolic characterization of overweight and obese adults

Katie R. Hirsch; Malia N.M. Blue; Meredith G. Mock; Eric T. Trexler; Kristin S. Ondrak

ABSTRACT Objectives: Traditional evaluations of metabolic health may overlook underlying dysfunction in individuals who show no signs of insulin resistance or dyslipidemia. The purpose of this study was to characterize metabolic health in overweight and obese adults using traditional and non-traditional cardiometabolic variables. A secondary purpose was to evaluate differences between overweight/obese and male/female cohorts, respectively. Methods: Forty-nine overweight and obese adults (Mean ± SD; Age = 35.0 ± 8.9 yrs; Body mass index = 33.6 ± 5.2 kg·m−2; Percent body fat [%fat] = 36.7 ± 7.9%) were characterized. Body composition (fat mass [FM], lean mass [LM], %fat) was calculated using a 4-compartment model; visceral adipose tissue (VAT) was quantified using B-mode ultrasound. Resting metabolic rate (RMR) and respiratory exchange ratio (RER) were evaluated using indirect calorimetry. Fasted blood and saliva samples were analyzed for total cholesterol (TC), high-density lipoproteins (HDL), low-density lipoproteins (LDL), triglycerides (TRG), glucose (GLUC), insulin, leptin, estradiol, and cortisol. Results: The prevalence of individuals with two or more cardiometabolic risk factors increased from 13%, using traditional risk factors (GLUC, TRG, HDL), to 80% when non-traditional metabolic factors (VAT, LM, RMR, RER, TC, LDL, HOMA-IR) were considered. Between overweight/obese, there were no significant differences in %fat (p = 0.152), VAT (p = 0.959), RER (p = 0.493), lipids/GLUC (p > 0.05), insulin (p = 0.143), leptin (p = 0.053), or cortisol (p = 0.063); obese had higher FM, LM, RMR, and estradiol (p < 0.01). Males had greater LM, RMR, and TRG (p < 0.01); females had greater %fat, and leptin (p < 0.001). There were no significant sex differences in RER, estradiol, insulin, or cortisol (p > 0.05). Conclusions: Evaluating metabolic health beyond BMI and traditional cardiometabolic risk factors can give significant insights into metabolic status. Due to high variability in metabolic health in overweight and obese adults and inherent sex differences, implementation of body composition and visceral fat measures in the clinical setting can improve early identification and approaches to disease prevention.


Journal of Strength and Conditioning Research | 2016

Body Composition and Muscle Characteristics of Division I Track and Field Athletes.

Katie R. Hirsch; Eric T. Trexler; Erica J. Roelofs

Abstract Hirsch, KR, Smith-Ryan, AE, Trexler, ET, and Roelofs, EJ. Body composition and muscle characteristics of division I track and field athletes. J Strength Cond Res 30(5): 1231–1238, 2016—The purpose of this study was to evaluate event-specific body composition and muscle characteristics of track and field athletes and to assess body composition changes after 1 year. Sixty collegiate track and field athletes (mean ± SD; age = 19.2 ± 1.4 years, height = 174.6 ± 9.0 cm, and weight = 71.5 ± 12.5 kg) were stratified into 6 event groups. Total and regional body composition measurements were assessed using dual-energy x-ray absorptiometry. A panoramic scan of the vastus lateralis was taken with B-mode ultrasound to determine muscle cross-sectional area and echo intensity (EI). Body composition measurements were repeated a year later in a subset of returning athletes (n = 33). Throwers had significantly more absolute fat mass (FM; 21.6 ± 11.0 kg), total body mass (89.7 ± 17.4 kg), percent fat (23.6 ± 7.8), and trunk fat (9.4 ± 5.8 kg) than all other event groups (p ⩽ 0.05). Throwers had the most absolute lean mass (LM; 64.2 ± 11.7 kg; p > 0.05), but relative to body mass had relatively less LM (0.72 ± 0.08 kg; p ⩽ 0.05). Despite high FM, throwers had lower EI (63.4 ± 5.2 a.u). After 1 year, relative armLM increased slightly in all event groups (p ⩽ 0.05). Evaluation of muscle characteristics in addition to total and regional body composition may be valuable for improving performance, injury prevention, and assessing health risks. With appropriate training, track and field athletes may be able to minimize losses in LM and gains in FM between seasons.


Journal of Science and Medicine in Sport | 2018

The effects of high intensity interval training on muscle size and quality in overweight and obese adults

Malia N.M. Blue; Eric T. Trexler; Katie R. Hirsch

OBJECTIVES Despite growing popularity of high intensity interval training (HIIT) for improving health and fitness, limited data exist identifying the effects of HIIT on muscle characteristics. The purpose of the current study was to investigate the effects of a 3-week HIIT intervention on muscle size and quality in overweight and obese men and women. DESIGN Randomized controlled trial. METHODS Forty-four overweight and obese men and women (mean±SD; age: 35.4±12.3years; height: 174.9±9.7cm; weight: 94.6±17.0kg; %fat: 32.7±6.5%) completed the current study. During baseline and post testing, muscle cross sectional area (mCSA) and echo intensity (EI) were determined from a panoramic scan of the vastus lateralis obtained by B-mode ultrasonography. Body composition variables were measured using dual energy X-ray absorptiometry. Participants were randomized into either a 1:1 work-to-rest ratio HIIT group (SIT; n=16), a 2:1 work-to-rest ratio HIIT group (LIT; n=19), or control (CON; n=9). HIIT participants performed five, 2-min bouts (LIT) or 10, 1-min bouts (SIT) at 85-100% VO2peak for 9 sessions over three weeks. RESULTS Analysis of covariance demonstrated a significant increase in mCSA for SIT (p=0.038; change (Δ)=3.17±3.36cm2) compared to CON (Δ=-0.34±2.36cm2). There was no significant difference in EI across groups (p=0.672). CONCLUSIONS HIIT may be an effective exercise modality to influence muscle size in overweight and obese individuals. Future studies should investigate muscle characteristics and remodeling in an overweight population following interventions of longer duration and varying work-to-rest protocols.


Applied Physiology, Nutrition, and Metabolism | 2018

Validity of the 4-compartment model using dual energy X-ray absorptiometry-derived body volume in overweight individuals

Malia N.M. Blue; Katie R. Hirsch; Eric T. Trexler

The purpose of the present study was to assess the validity of dual-energy X-ray absorptiometry (DXA) to estimate body volume (BV) for use in a 4-compartment (4C) body composition model in an overweight/obese population. Body composition of 61 overweight/obese adults (age: 37.3 ± 10.0 years; height: 170.2 ± 9.5 cm; body mass: 97.1 ± 17.4 kg) was measured by 2 methods: a criterion 4C model and a DXA-derived BV 4C model. For both models, bioelectrical impedance spectroscopy was used to estimate total body water; total body bone mineral content was measured by a full-body DXA scan. For the criterion 4C model, BV was derived from air displacement plethysmography; for the DXA-4C model, BV was derived from previously published coefficients. Total error (TE) and standard error of the estimate (SEE) values for BV (TE = 1.11 L; SEE = 0.01 L) and body fat percentage (%fat) (TE = 2.92%; SEE = 0.32%) represented good to very good agreement between models. The DXA-derived measures of body composition (BV: 96.6 ± 18.1 L; %fat: 39.5% ± 8.1%; fat mass: 38.5 ± 11.9 kg), were significantly greater (p < 0.001) than 4C criterion measures (BV: 95.7 ± 17.6 L; %fat: 37.0% ± 7.6%; FM: 36.0 ± 10.8 kg) with the exception of lean mass, which was significantly lower (p < 0.001; DXA-4C: 58.2 ± 11.2 kg; criterion 4C: 60.7 ± 12.0 kg). Although small statistically significant mean differences were observed, TE and SEE results support the use of the DXA-4C method, which requires less time and equipment, for valid estimates of body composition in overweight/obese individuals.


Journal of Dietary Supplements | 2017

Cordyceps militaris Improves Tolerance to High-Intensity Exercise After Acute and Chronic Supplementation

Katie R. Hirsch; Erica J. Roelofs; Eric T. Trexler; Meredith G. Mock

ABSTRACT To determine the effects of a mushroom blend containing Cordyceps militaris on high-intensity exercise after 1 and 3 weeks of supplementation. Twenty-eight individuals (Mean ± standard deviation [SD]; Age = 22.7 ± 4.1 yrs; Height = 175.4 ± 8.7 cm; Weight = 71.6 ± 12.0 kg) participated in this randomized, repeated measures, double-blind, placebo-controlled design. Maximal oxygen consumption (VO2max), time to exhaustion (TTE), and ventilatory threshold (VT) were measured during a maximal graded exercise test on a cycle ergometer. Relative peak power output (RPP), average power output (AvgP), and percent drop (%drop) were recorded during a 3 minute maximal cycle test with resistance at 4.5% body weight. Subjects consumed 4 g·d−1 mushroom blend (MR) or maltodextrin (PL) for 1 week. Ten volunteers supplemented for an additional 2 weeks. Exercise tests were separated by at least 48 hours and repeated following supplementation periods. One week of supplementation elicited no significant time × treatment interaction for VO2max (p = 0.364), VT (p = 0.514), TTE (p = 0.540), RPP (p = 0.134), AvgP (p = 0.398), or %drop (p = 0.823). After 3 weeks, VO2max significantly improved (p = 0.042) in MR (+4.8 ml·kg−1·min−1), but not PL (+0.9 ml·kg−1·min−1). Analysis of 95% confidence intervals revealed significant improvements in TTE after 1- (+28.1 s) and 3 weeks (+69.8 s) in MR, but not PL, with additional improvements in VO2max (+4.8 ml·kg−1·min−1) and VT (+0.7 l·min−1) after 3 weeks. Acute supplementation with a Cordyceps militaris containing mushroom blend may improve tolerance to high-intensity exercise; greater benefits may be elicited with consistent chronic supplementation.

Collaboration


Dive into the Katie R. Hirsch's collaboration.

Top Co-Authors

Avatar

Eric T. Trexler

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Malia N.M. Blue

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Meredith G. Mock

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Erica J. Roelofs

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric D. Ryan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Gena R. Gerstner

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Craig R. Kleinberg

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Tweedell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Brian Pietrosimone

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Brittney A. Luc-Harkey

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge