Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie R. Hughes is active.

Publication


Featured researches published by Katie R. Hughes.


Cell | 2008

Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes

Alexander G. Maier; Melanie Rug; Matthew T. O'Neill; Monica Brown; Srabasti J. Chakravorty; Tadge Szestak; Joanne M. Chesson; Yang Wu; Katie R. Hughes; Ross L. Coppel; Chris Newbold; James G. Beeson; Alister Craig; Brendan S. Crabb; Alan F. Cowman

Summary A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.


Nature | 2014

A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium

Abhinav Sinha; Katie R. Hughes; Katarzyna Modrzynska; Thomas D. Otto; Claudia Pfander; Nicholas J. Dickens; Agnieszka A. Religa; Ellen Bushell; Anne Graham; Rachael Cameron; Björn F.C. Kafsack; April E. Williams; Manuel Llinás; Matthew Berriman; Oliver Billker; Andrew P. Waters

Commitment to and completion of sexual development are essential for malaria parasites (protists of the genus Plasmodium) to be transmitted through mosquitoes. The molecular mechanism(s) responsible for commitment have been hitherto unknown. Here we show that PbAP2-G, a conserved member of the apicomplexan AP2 (ApiAP2) family of DNA-binding proteins, is essential for the commitment of asexually replicating forms to sexual development in Plasmodium berghei, a malaria parasite of rodents. PbAP2-G was identified from mutations in its encoding gene, PBANKA_143750, which account for the loss of sexual development frequently observed in parasites transmitted artificially by blood passage. Systematic gene deletion of conserved ApiAP2 genes in Plasmodium confirmed the role of PbAP2-G and revealed a second ApiAP2 member (PBANKA_103430, here termed PbAP2-G2) that significantly modulates but does not abolish gametocytogenesis, indicating that a cascade of ApiAP2 proteins are involved in commitment to the production and maturation of gametocytes. The data suggest a mechanism of commitment to gametocytogenesis in Plasmodium consistent with a positive feedback loop involving PbAP2-G that could be exploited to prevent the transmission of this pernicious parasite.


The EMBO Journal | 2007

A novel ISWI is involved in VSG expression site downregulation in African trypanosomes

Katie R. Hughes; Matthew Wand; Lucy Foulston; Rosanna Young; Kate Harley; Stephen J. Terry; Klaus Ersfeld; Gloria Rudenko

African trypanosomes show monoallelic expression of one of about 20 telomeric variant surface glycoprotein (VSG) gene‐expression sites (ESs) while multiplying in the mammalian bloodstream. We screened for genes involved in ES silencing using flow cytometry and RNA interference (RNAi). We show that a novel member of the ISWI family of SWI2/SNF2‐related chromatin‐remodelling proteins (TbISWI) is involved in ES downregulation in Trypanosoma brucei. TbISWI has an atypical protein architecture for an ISWI, as it lacks characteristic SANT domains. Depletion of TbISWI by RNAi leads to 30–60‐fold derepression of ESs in bloodstream‐form T. brucei, and 10–17‐fold derepression in insect form T. brucei. We show that although blocking synthesis of TbISWI leads to derepression of silent VSG ES promoters, this does not lead to fully processive transcription of silent ESs, or an increase in ES‐activation rates. VSG ES activation in African trypanosomes therefore appears to be a multistep process, whereby an increase in transcription from a silent ES promoter is necessary but not sufficient for full ES activation.


Biochemical Society Transactions | 2008

Host response to cytoadherence in Plasmodium falciparum

Srabasti J. Chakravorty; Katie R. Hughes; Alister Craig

Cytoadherence of PRBCs (Plasmodium falciparum-infected red blood cells) to host endothelium has been associated with pathology in severe malaria, but, despite extensive information on the primary processes involved in the adhesive interactions, the mechanisms underlying the disease are poorly understood. Endothelial cells have the ability to mobilize immune and pro-adhesive responses when exposed to both PRBCs and TNF (tumour necrosis factor). In addition, there is also an up-regulation by PRBCs and TNF and a concurrent down-regulation of a range of genes involved in inflammation and cell death, by PRBCs and TNF. We propose that the balance between positive and negative regulation will contribute to endothelial pathology during malarial infection. Apposition of PRBCs has been shown by a number of groups to activate signalling pathways. This is dependent, at least in part, on the cytoadherence characteristics of the invading isolate, such that the avidity of the PRBC for the receptor on host endothelium is proportional to the level of activation of the signalling pathways. An understanding of the post-adhesive processes produced by cytoadherence may help us to understand the variable pathology seen in malaria and to design appropriate therapies to alleviate severe disease.


Molecular Microbiology | 2005

VSG switching in Trypanosoma brucei: antigenic variation analysed using RNAi in the absence of immune selection

Niall Aitcheson; Suzanne Talbot; Jesse Shapiro; Katie R. Hughes; Carl Adkin; Thomas Butt; Karen Sheader; Gloria Rudenko

Trypanosoma brucei relies on antigenic variation of its variant surface glycoprotein (VSG) coat for survival. We show that VSG switching can be efficiently studied in vitro using VSG RNAi in place of an immune system to select for switch variants. Contrary to models predicting an instant switch after inhibition of VSG synthesis, switching was not induced by VSG RNAi and occurred at a rate of 10−4 per division. We find a highly reproducible hierarchy of VSG activation, which appears to be capable of resetting, whereby more than half of the switch events over 12 experiments were to one of two VSGs. We characterized switched clones according to switch mechanism using marker genes in the active VSG expression site (ES). Transcriptional switches between ESs were the preferred switching mechanism, whereby at least 10 of the 17 ESs identified in T. brucei 427 can be functionally active in vitro. We could specifically select for switches mediated by DNA rearrangements by inducing VSG RNAi in the presence of drug selection for the active ES. Most of the preferentially activated VSGs could be activated by multiple mechanisms. This VSG RNAi‐based procedure provides a rapid and powerful means for analysing VSG switching in African trypanosomes entirely in vitro.


Molecular and Biochemical Parasitology | 2010

Continued cytoadherence of Plasmodium falciparum infected red blood cells after antimalarial treatment

Katie R. Hughes; Giancarlo A. Biagini; Alister Craig

Development of severe disease in Plasmodium falciparum malaria infection is thought to be, at least in part, due to the sequestration of trophozoite-stage infected red blood cells in the microvasculature. The process of cytoadherence is mediated by binding of the parasite protein PfEMP-1 on the surface of infected red blood cells to endothelial cell receptors. Although antimalarial treatments rapidly kill parasites, significant mortality is still seen in severe malaria, particularly within 24 h of hospital admission. We find that cytoadherence of infected red blood cells continues for several hours after killing of the parasite by antimalarials; after 24 h treatment using a range of antimalarials binding is approximately one-third the level of untreated parasite cultures. This is consistent with the maintained presence of PfEMP-1 on the surface of drug-treated infected red blood cells. A specific advantage of artesunate over other treatments tested is seen on addition of this drug to younger ring stage parasites, which do not mature to the cytoadherent trophozoite-stage. These findings show that cytoadherence, a potential pathogenic property of P. falciparum infected red blood cells, continues long after the parasite has been killed. These data support the development of adjunctive therapies to reverse the pathophysiological consequences of cytoadherence.


PLOS Pathogens | 2016

Stage-specific changes in Plasmodium metabolism required for differentiation and adaptation to different host and vector environments

Anubhav Srivastava; Nisha Philip; Katie R. Hughes; Konstantina Georgiou; James I. MacRae; Michael P. Barrett; Darren J. Creek; Malcolm J. McConville; Andrew P. Waters

Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.


Wiley Interdisciplinary Reviews - Rna | 2010

From cradle to grave: RNA biology in malaria parasites

Katie R. Hughes; Nisha Philip; G. Lucas Starnes; Sonya Taylor; Andrew P. Waters

Malaria is caused by the unicellular apicomplexan parasites of the genus Plasmodium, some of which, including the major human parasite Plasmodium falciparum, have extreme genome compositions (A/T content > 80%). In this overview of RNA production, roles and degradation, we show that despite their unusual genome composition these parasites generally exhibit the standard eukaryotic features of these processes. Thus genes are monocistronic and transcribed by RNA polymerases that conform to the general categories of I, II, and III. Plasmodium spp. are unusual in that they possess structurally distinct rRNA genes that are expressed at different points in the complicated life cycle of the parasite. Transcription in blood stage asexual parasites follows a cascade consistent with a dependency upon plant‐like apetala 2 (AP2) DNA‐binding proteins. mRNA is transported to, translated and degraded in the cytoplasm and the transcription pattern is largely inflexible and responsive to temperature and glucose but not drugs. Furthermore, although Plasmodium spp. undertake controlled repression of mRNA species at a number of points in their life cycle only one mechanism, employed by female gametocytes (gamete precursor cells), is clear; it resembles that of metazoan female gametes, consisting of a complex of repression‐associated proteins in an architecture formed with the mRNA 5′ cap and dependent on U‐rich untranslated region (UTR) elements. Extensive antisense transcription has been documented resulting in the production of both short and long transcripts of generally unknown functional significance. This review attempts to summarize what is currently known about the biology of Plasmodium RNA. Copyright


Science Advances | 2018

Plasmodium gametocytes display homing and vascular transmigration in the host bone marrow.

Mariana De Niz; Elamaran Meibalan; Pedro Mejia; Siyuan Ma; Nicolas M. B. Brancucci; Carolina Agop-Nersesian; Rebecca Mandt; Priscilla Ngotho; Katie R. Hughes; Andrew P. Waters; Curtis Huttenhower; James R. Mitchell; Roberta Martinelli; Friedrich Frischknecht; Karl B. Seydel; Terrie E. Taylor; Danny A. Milner; Volker Heussler; Matthias Marti

In vivo visualization of Plasmodium parasites reveals sublocalization, deformability, and mobility of gametocytes in the bone marrow. Transmission of Plasmodium parasites to the mosquito requires the formation and development of gametocytes. Studies in infected humans have shown that only the most mature forms of Plasmodium falciparum gametocytes are present in circulation, whereas immature forms accumulate in the hematopoietic environment of the bone marrow. We used the rodent model Plasmodium berghei to study gametocyte behavior through time under physiological conditions. Intravital microscopy demonstrated preferential homing of early gametocyte forms across the intact vascular barrier of the bone marrow and the spleen early during infection and subsequent development in the extravascular environment. During the acute phase of infection, we observed vascular leakage resulting in further parasite accumulation in this environment. Mature gametocytes showed high deformability and were found entering and exiting the intact vascular barrier. We suggest that extravascular gametocyte localization and mobility are essential for gametocytogenesis and transmission of Plasmodium to the mosquito.


Wellcome Open Research | 2017

Rapid inducible protein displacement in Plasmodium in vivo and in vitro using knocksideways technology

Katie R. Hughes; Andrew P. Waters

A deeper understanding of the biology of the Plasmodium parasite is essential in order to identify targets for interventions, with the ultimate aim of eliminating malaria. Determining the function(s) of essential proteins in Plasmodium has, until recently, been hampered by the lack of efficient conditional systems to abrogate proteins. We report the adaptation of a conditional technology, knocksideways (KS), for use in Plasmodium berghei, which can potentially rapidly inactivate proteins of interest through relocalisation. The system is induced using rapamycin, which allows for KS both in vitro and in vivo and is effective more rapidly than any other reported system. KS utilises pairs of fluorescent tags that facilitate live imaging and allows for rapid confirmation of efficient protein redistribution on live parasites, allowing for streamlined workflows. We demonstrate the characteristics of the system using transgenically expressed cytoplasmic GFP and provide proof of principle by inducibly redistributing a number of proteins with different native, subcellular locations. We also demonstrate that KS can be applied to both mammalian and insect stages of Plasmodium. KS expands the range of (conditional) technologies for genetic manipulation of malaria parasites and offers the potential to be further developed for medium throughput phenotype screens.

Collaboration


Dive into the Katie R. Hughes's collaboration.

Top Co-Authors

Avatar

Alister Craig

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Srabasti J. Chakravorty

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giancarlo A. Biagini

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadge Szestak

Liverpool School of Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Yang Wu

Liverpool School of Tropical Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge