Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie R. Martin is active.

Publication


Featured researches published by Katie R. Martin.


Autophagy | 2014

Development of potent autophagy inhibitors that sensitize oncogenic BRAF V600E mutant melanoma tumor cells to vemurafenib.

Megan L. Goodall; Tong Wang; Katie R. Martin; Matthew G Kortus; Audra L. Kauffman; Jeffrey M. Trent; Stephen Gately; Jeffrey P. MacKeigan

Autophagy is a dynamic cell survival mechanism by which a double-membrane vesicle, or autophagosome, sequesters portions of the cytosol for delivery to the lysosome for recycling. This process can be inhibited using the antimalarial agent chloroquine (CQ), which impairs lysosomal function and prevents autophagosome turnover. Despite its activity, CQ is a relatively inadequate inhibitor that requires high concentrations to disrupt autophagy, highlighting the need for improved small molecules. To address this, we screened a panel of antimalarial agents for autophagy inhibition and chemically synthesized a novel series of acridine and tetrahydroacridine derivatives. Structure-activity relationship studies of the acridine ring led to the discovery of VATG-027 as a potent autophagy inhibitor with a high cytotoxicity profile. In contrast, the tetrahydroacridine VATG-032 showed remarkably little cytotoxicity while still maintaining autophagy inhibition activity, suggesting that both compounds act as autophagy inhibitors with differential effects on cell viability. Further, knockdown of autophagy-related genes showed no effect on cell viability, demonstrating that the ability to inhibit autophagy is separate from the compound cytotoxicity profiles. Next, we determined that both inhibitors function through lysosomal deacidification mechanisms and ultimately disrupt autophagosome turnover. To evaluate the genetic context in which these lysosomotropic inhibitors may be effective, they were tested in patient-derived melanoma cell lines driven by oncogenic BRAF (v-raf murine sarcoma viral oncogene homolog B). We discovered that both inhibitors sensitized melanoma cells to the BRAF V600E inhibitor vemurafenib. Overall, these autophagy inhibitors provide a means to effectively block autophagy and have the potential to sensitize mutant BRAF melanomas to first-line therapies.


Science Signaling | 2011

Identification of a Lysosomal Pathway That Modulates Glucocorticoid Signaling and the Inflammatory Response

Yuanzheng He; Yong Xu; Chenghai Zhang; Xiang Gao; Karl Dykema; Katie R. Martin; Jiyuan Ke; Hudson Ea; Sok Kean Khoo; James H. Resau; Alberts As; Jeffrey P. MacKeigan; Kyle A. Furge; Xu He

Inhibition of lysosome function promotes the anti-inflammatory effects of glucocorticoid signaling. Targeting Lysosomes to Limit Inflammation Chloroquine, which inhibits lysosome function, is best known for its use as an antimalarial agent. However, it has also been clinically used to treat inflammation. He et al. showed that agents that inhibit lysosome function or biogenesis promoted glucocorticoid-mediated regulation of gene expression and that this enhancement of glucocorticoid signaling was associated with an increase in the stability and abundance of the glucocorticoid receptor. Other receptors of the nuclear receptor family, but not other transcription factors, were also stabilized by inhibition of lysosomal function, suggesting that a lysosomal pathway contributes to the degradation of this family of receptors and may present a target for development of treatment strategies for autoimmune and inflammatory diseases, as well as diseases associated with aberrant nuclear receptor signaling. The antimalaria drug chloroquine has been used as an anti-inflammatory agent for treating systemic lupus erythematosus and rheumatoid arthritis. We report that chloroquine promoted the transrepression of proinflammatory cytokines by the glucocorticoid receptor (GR). In a mouse collagen-induced arthritis model, chloroquine enhanced the therapeutic effects of glucocorticoid treatment. By inhibiting lysosome function, chloroquine synergistically activated glucocorticoid signaling. Lysosomal inhibition by either bafilomycin A1 (an inhibitor of the vacuolar adenosine triphosphatase) or knockdown of transcription factor EB (TFEB, a master activator of lysosomal biogenesis) mimicked the effects of chloroquine. The abundance of the GR, as well as that of the androgen receptor and estrogen receptor, correlated with changes in lysosomal biogenesis. Thus, we showed that glucocorticoid signaling is regulated by lysosomes, which provides a mechanistic basis for treating inflammation and autoimmune diseases with a combination of glucocorticoids and lysosomal inhibitors.


Journal of Cell Science | 2011

Identification of PTPσ as an autophagic phosphatase

Katie R. Martin; Yong Xu; Brendan D. Looyenga; Ryan J. Davis; Chia Lun Wu; Michel L. Tremblay; H. Eric Xu; Jeffrey P. MacKeigan

Macroautophagy is a dynamic process whereby portions of the cytosol are encapsulated in double-membrane vesicles and delivered to the lysosome for degradation. Phosphatidylinositol-3-phosphate (PtdIns3P) is concentrated on autophagic vesicles and recruits effector proteins that are crucial for this process. The production of PtdIns3P by the class III phosphatidylinositol 3-kinase Vps34, has been well established; however, protein phosphatases that antagonize this early step in autophagy remain to be identified. To identify such enzymes, we screened human phosphatase genes by RNA interference and found that loss of PTPσ, a dual-domain protein tyrosine phosphatase (PTP), increases levels of cellular PtdIns3P. The abundant PtdIns3P-positive vesicles conferred by loss of PTPσ strikingly phenocopied those observed in cells starved of amino acids. Accordingly, we discovered that loss of PTPσ hyperactivates both constitutive and induced autophagy. Finally, we found that PTPσ localizes to PtdIns3P-positive membranes in cells, and this vesicular localization is enhanced during autophagy. We therefore describe a novel role for PTPσ and provide insight into the regulation of autophagy. Mechanistic knowledge of this process is crucial for understanding and targeting therapies for several human diseases, including cancer and Alzheimers disease, in which abnormal autophagy might be pathological.


PLOS ONE | 2014

Mitochondrial Morphological Features Are Associated with Fission and Fusion Events

Laura M. Westrate; J. Drocco; Katie R. Martin; William S. Hlavacek; Jeffrey P. MacKeigan

Mitochondria are dynamic organelles that undergo constant remodeling through the regulation of two opposing processes, mitochondrial fission and fusion. Although several key regulators and physiological stimuli have been identified to control mitochondrial fission and fusion, the role of mitochondrial morphology in the two processes remains to be determined. To address this knowledge gap, we investigated whether morphological features extracted from time-lapse live-cell images of mitochondria could be used to predict mitochondrial fate. That is, we asked if we could predict whether a mitochondrion is likely to participate in a fission or fusion event based on its current shape and local environment. Using live-cell microscopy, image analysis software, and supervised machine learning, we characterized mitochondrial dynamics with single-organelle resolution to identify features of mitochondria that are predictive of fission and fusion events. A random forest (RF) model was trained to correctly classify mitochondria poised for either fission or fusion based on a series of morphological and positional features for each organelle. Of the features we evaluated, mitochondrial perimeter positively correlated with mitochondria about to undergo a fission event. Similarly mitochondrial solidity (compact shape) positively correlated with mitochondria about to undergo a fusion event. Our results indicate that fission and fusion are positively correlated with mitochondrial morphological features; and therefore, mitochondrial fission and fusion may be influenced by the mechanical properties of mitochondrial membranes.


Autophagy | 2013

Computational model for autophagic vesicle dynamics in single cells

Katie R. Martin; Dipak Barua; Audra L. Kauffman; Laura M. Westrate; Richard G. Posner; William S. Hlavacek; Jeffrey P. MacKeigan

Macroautophagy (autophagy) is a cellular recycling program essential for homeostasis and survival during cytotoxic stress. This process, which has an emerging role in disease etiology and treatment, is executed in four stages through the coordinated action of more than 30 proteins. An effective strategy for studying complicated cellular processes, such as autophagy, involves the construction and analysis of mathematical or computational models. When developed and refined from experimental knowledge, these models can be used to interrogate signaling pathways, formulate novel hypotheses about systems, and make predictions about cell signaling changes induced by specific interventions. Here, we present the development of a computational model describing autophagic vesicle dynamics in a mammalian system. We used time-resolved, live-cell microscopy to measure the synthesis and turnover of autophagic vesicles in single cells. The stochastically simulated model was consistent with data acquired during conditions of both basal and chemically-induced autophagy. The model was tested by genetic modulation of autophagic machinery and found to accurately predict vesicle dynamics observed experimentally. Furthermore, the model generated an unforeseen prediction about vesicle size that is consistent with both published findings and our experimental observations. Taken together, this model is accurate and useful and can serve as the foundation for future efforts aimed at quantitative characterization of autophagy.


Journal of Medicinal Chemistry | 2015

Synthesis of improved lysomotropic autophagy inhibitors.

Tong Wang; Megan L. Goodall; Paul Gonzales; Mario Sepulveda; Katie R. Martin; Stephen Gately; Jeffrey P. MacKeigan

Autophagy is a conserved cellular pathway used to recycle nutrients through lysosomal breakdown basally and under times of stress (e.g., nutrient deprivation, chemotherapeutic treatment). Oncogenes are known to induce autophagy, which may be exploited by cancers for cell survival. To identify autophagy inhibitors with potential therapeutic value for cancer, we screened a panel of antimalarial agents and found that quinacrine (QN) had 60-fold higher potency of autophagy inhibition than chloroquine (CQ), a well-known autophagy inhibitor that functions by disrupting lysosomal activity. Despite desirable autophagy inhibiting properties, QN showed considerable cytotoxicity. Therefore, we designed and synthesized a novel series of QN analogs and investigated their effects on autophagy inhibition and cell viability. Notably, we found two compounds (33 and 34), bearing a backbone of 1,2,3,4-tetrahydroacridine, had limited cytotoxicity yet strong autophagy inhibition properties. In conclusion, these improved lysomotropic autophagy inhibitors may have use as anticancer agents in combination with conventional therapies.


PLOS ONE | 2012

Identification of Small Molecule Inhibitors of PTPσ through an Integrative Virtual and Biochemical Approach

Katie R. Martin; Pooja Narang; Yong Xu; Audra L. Kauffman; Joachim Petit; H. Eric Xu; Nathalie Meurice; Jeffrey P. MacKeigan

PTPσ is a dual-domain receptor type protein tyrosine phosphatase (PTP) with physiologically important functions which render this enzyme an attractive biological target. Specifically, loss of PTPσ has been shown to elicit a number of cellular phenotypes including enhanced nerve regeneration following spinal cord injury (SCI), chemoresistance in cultured cancer cells, and hyperactive autophagy, a process critical to cell survival and the clearance of pathological aggregates in neurodegenerative diseases. Owing to these functions, modulation of PTPσ may provide therapeutic value in a variety of contexts. Furthermore, a small molecule inhibitor would provide utility in discerning the cellular functions and substrates of PTPσ. To develop such molecules, we combined in silico modeling with in vitro phosphatase assays to identify compounds which effectively inhibit the enzymatic activity of PTPσ. Importantly, we observed that PTPσ inhibition was frequently mediated by oxidative species generated by compounds in solution, and we further optimized screening conditions to eliminate this effect. We identified a compound that inhibits PTPσ with an IC50 of 10 µM in a manner that is primarily oxidation-independent. This compound favorably binds the D1 active site of PTPσ in silico, suggesting it functions as a competitive inhibitor. This compound will serve as a scaffold structure for future studies designed to build selectivity for PTPσ over related PTPs.


Nature Communications | 2017

The genomic landscape of tuberous sclerosis complex

Katie R. Martin; Wanding Zhou; Megan J. Bowman; Juliann Shih; Kit Sing Au; Kristin E. Dittenhafer-Reed; Kellie A. Sisson; Julie Koeman; Daniel J. Weisenberger; Sandra Cottingham; Steven T. DeRoos; Orrin Devinsky; Mary E. Winn; Andrew D. Cherniack; Hui Shen; Hope Northrup; Darcy A. Krueger; Jeffrey P. MacKeigan

Tuberous sclerosis complex (TSC) is a rare genetic disease causing multisystem growth of benign tumours and other hamartomatous lesions, which leads to diverse and debilitating clinical symptoms. Patients are born with TSC1 or TSC2 mutations, and somatic inactivation of wild-type alleles drives MTOR activation; however, second hits to TSC1/TSC2 are not always observed. Here, we present the genomic landscape of TSC hamartomas. We determine that TSC lesions contain a low somatic mutational burden relative to carcinomas, a subset feature large-scale chromosomal aberrations, and highly conserved molecular signatures for each type exist. Analysis of the molecular signatures coupled with computational approaches reveals unique aspects of cellular heterogeneity and cell origin. Using immune data sets, we identify significant neuroinflammation in TSC-associated brain tumours. Taken together, this molecular catalogue of TSC serves as a resource into the origin of these hamartomas and provides a framework that unifies genomic and transcriptomic dimensions for complex tumours.


PLOS ONE | 2015

Computational analysis of an autophagy/translation switch based on mutual inhibition of MTORC1 and ULK1.

Paulina Szymańska; Katie R. Martin; Jeffrey P. MacKeigan; William S. Hlavacek; Tomasz Lipniacki

We constructed a mechanistic, computational model for regulation of (macro)autophagy and protein synthesis (at the level of translation). The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1), namely the protein kinase MTOR (mechanistic target of rapamycin) and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK). Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputs of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy), a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.


PLOS ONE | 2014

The Pseudophosphatase MK-STYX Physically and Genetically Interacts with the Mitochondrial Phosphatase PTPMT1

Natalie M. Niemi; Juliana L. Sacoman; Laura M. Westrate; L. Alex Gaither; Nathan J. Lanning; Katie R. Martin; Jeffrey P. MacKeigan

We previously performed an RNA interference (RNAi) screen and found that the knockdown of the catalytically inactive phosphatase, MK-STYX [MAPK (mitogen-activated protein kinase) phospho-serine/threonine/tyrosine-binding protein], resulted in potent chemoresistance. Our follow-up studies demonstrated that knockdown of MK-STYX prevents cells from undergoing apoptosis through a block in cytochrome c release, but that MK-STYX does not localize proximal to the molecular machinery currently known to control this process. In an effort to define its molecular mechanism, we utilized an unbiased proteomics approach to identify proteins that interact with MK-STYX. We identified the mitochondrial phosphatase, PTPMT1 (PTP localized to mitochondrion 1), as the most significant and unique interaction partner of MK-STYX. We previously reported that knockdown of PTPMT1, an important component of the cardiolipin biosynthetic pathway, is sufficient to induce apoptosis and increase chemosensitivity. Accordingly, we hypothesized that MK-STYX and PTPMT1 interact and serve opposing functions in mitochondrial-dependent cell death. We confirmed that MK-STYX and PTPMT1 interact in cells and, importantly, found that MK-STYX suppresses PTPMT1 catalytic activity. Furthermore, we found that knockdown of PTPMT1 resensitizes MK-STYX knockdown cells to chemotherapeutics and restores the ability to release cytochrome c. Taken together, our data support a model in which MK-STYX controls apoptosis by negatively regulating PTPMT1. Given the important role of PTPMT1 in the production of cardiolipin and other phospholipids, this raises the possibility that dysregulated mitochondrial lipid metabolism may facilitate chemoresistance.

Collaboration


Dive into the Katie R. Martin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William S. Hlavacek

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge