Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katri Eskelin is active.

Publication


Featured researches published by Katri Eskelin.


Journal of Virology | 2011

Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta

Katri Eskelin; Anders Hafrén; Kimmo I. Rantalainen; Kristiina Mäkinen

ABSTRACT Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.


Journal of General Virology | 2014

Molecular and cellular mechanisms underlying potyvirus infection

Konstantin I. Ivanov; Katri Eskelin; Andres Lõhmus; Kristiina Mäkinen

Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.


Journal of Virology | 2011

Structural Flexibility Allows the Functional Diversity of Potyvirus Genome-Linked Protein VPg§

Kimmo I. Rantalainen; Katri Eskelin; Peter Tompa; Kristiina Mäkinen

ABSTRACT Several viral genome-linked proteins (VPgs) of plant viruses are intrinsically disordered and undergo folding transitions in the presence of partners. This property has been postulated to be one of the factors that enable the functional diversity of the protein. We created a homology model of Potato virus A VPg and positioned the known functions and structural properties of potyviral VPgs on the novel structural model. The model suggests an elongated structure with a hydrophobic core composed of antiparallel β-sheets surrounded by helices and a positively charged contact surface where most of the known activities are localized. The model most probably represents the fold induced immediately after binding of VPg to a negatively charged lipid surface or to SDS. When the charge of the positive surface was lowered by lysine mutations, the efficiencies of in vitro NTP binding, uridylylation reaction, and unspecific RNA binding were reduced and in vivo the infectivity was debilitated. The most likely uridylylation site, Tyr63, locates to the positively charged surface. Surprisingly, a Tyr63Ala mutation did not prevent replication completely but blocked spreading of the virus. Based on the localization of Tyr119 in the model, it was hypothesized to serve as an alternative uridylylation site. Evidence to support the role of Tyr119 in replication was obtained which gives a positive example of the prediction power of the model. Taken together, our experimental data support the features presented in the model and the idea that the functional diversity is attributable to structural flexibility.


Journal of Virology | 2013

Ribosomal Protein P0 Promotes Potato Virus A Infection and Functions in Viral Translation Together with VPg and eIF(iso)4E

Anders Hafrén; Katri Eskelin; Kristiina Mäkinen

ABSTRACT We report here that the acidic ribosomal protein P0 is a component of the membrane-associated Potato virus A (PVA) ribonucleoprotein complex. As a constituent of the ribosomal stalk, P0 functions in translation. Although the ribosomal stalk proteins P0, P1, P2, and P3 are all important for PVA infection, P0 appears to have a distinct role from those of the other stalk proteins in infection. Our results indicate that P0 also regulates viral RNA functions as an extraribosomal protein. We reported previously that PVA RNA can be targeted by VPg to a specific gene expression pathway that protects the viral RNA from degradation and facilitates its translation. Here, we show that P0 is essential for this activity of VPg, similar to eIF4E/eIF(iso)4E. We also demonstrate that VPg, P0, and eIF(iso)4E synergistically enhance viral translation. Interestingly, the positive effects of VPg and P0 on viral translation were negatively correlated with the cell-to-cell spread of infection, suggesting that these processes may compete for viral RNA.


Plant Biotechnology Journal | 2009

Production of a recombinant full-length collagen type I α-1 and of a 45-kDa collagen type I α-1 fragment in barley seeds

Katri Eskelin; Anneli Ritala; Taina Suntio; Susan Blumer; Heidi Holkeri; Eva H. Wahlström; Julio Baez; Kristiina Mäkinen; Nuutila Anna Maria

Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.


Plant Journal | 2016

Molecular insights into the function of the viral RNA silencing suppressor HCPro.

Konstantin I. Ivanov; Katri Eskelin; Marta Bašić; Swarnalok De; Andres Lõhmus; Markku Varjosalo; Kristiina Mäkinen

Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.


Journal of Chromatography A | 2016

Asymmetric flow field flow fractionation methods for virus purification

Katri Eskelin; Mirka Lampi; Florian Meier; Evelin Moldenhauer; Dennis H. Bamford; Hanna M. Oksanen

Detailed biochemical and biophysical characterization of viruses requires viral preparations of high quantity and purity. The optimization of virus production and purification is an essential, but laborious and time-consuming process. Asymmetric flow field flow fractionation (AF4) is an attractive alternative method for virus purification because it is a rapid and gentle separation method that should preserve viral infectivity. Here we optimized the AF4 conditions to be used for purification of a model virus, bacteriophage PRD1, from various types of starting materials. Our results show that AF4 is well suited for PRD1 purification as monitored by virus recovery and specific infectivity. Short analysis time and high sample loads enabled us to use AF4 for preparative scale purification of PRD1. Furthermore, we show that AF4 enables the rapid real-time analysis of progeny virus production in infected cells.


Analytical and Bioanalytical Chemistry | 2014

Analysis of plant ribosomes with asymmetric flow field-flow fractionation

Leena Pitkänen; Päivi Tuomainen; Katri Eskelin

Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA–protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.


Journal of Chromatography B | 2018

Asymmetrical flow field-flow fractionation in purification of an enveloped bacteriophage ϕ6

Mirka Lampi; Hanna M. Oksanen; Florian Meier; Evelin Moldenhauer; Minna M. Poranen; Dennis H. Bamford; Katri Eskelin

Basic and applied virus research requires specimens that are purified to high homogeneity. Thus, there is much interest in the efficient production and purification of viruses and their subassemblies. Advances in the production steps have shifted the bottle neck of the process to the purification. Nonetheless, the development of purification techniques for different viruses is challenging due to the complex biological nature of the infected cell cultures as well as the biophysical and -chemical differences in the virus particles. We used bacteriophage ϕ6 as a model virus in our attempts to provide a new purification method for enveloped viruses. We compared asymmetrical flow field-flow fractionation (AF4)-based virus purification method to the well-established ultracentrifugation-based purification of ϕ6. In addition, binding of ϕ6 virions to monolithic anion exchange columns was tested to evaluate their applicability in concentrating the AF4 purified specimens. Our results show that AF4 enables one-hour purification of infectious enveloped viruses with specific infectivity of ~1 × 1013 PFU/mg of protein and ~65-95% yields. Obtained purity was comparable with that obtained using ultracentrifugation, but the yields from AF4 purification were 2-3-fold higher. Importantly, high quality virus preparations could be obtained directly from crude cell lysates. Furthermore, when used in combination with in-line light scattering detectors, AF4 purification could be coupled to simultaneous quality control of obtained virus specimen.


Viruses | 2018

Controlled Disassembly and Purification of Functional Viral Subassemblies Using Asymmetrical Flow Field-Flow Fractionation (AF4)

Katri Eskelin; Minna M. Poranen

Viruses protect their genomes by enclosing them into protein capsids that sometimes contain lipid bilayers that either reside above or below the protein layer. Controlled dissociation of virions provides important information on virion composition, interactions, and stoichiometry of virion components, as well as their possible role in virus life cycles. Dissociation of viruses can be achieved by using various chemicals, enzymatic treatments, and incubation conditions. Asymmetrical flow field-flow fractionation (AF4) is a gentle method where the separation is based on size. Here, we applied AF4 for controlled dissociation of enveloped bacteriophage φ6. Our results indicate that AF4 can be used to assay the efficiency of the dissociation process and to purify functional subviral particles.

Collaboration


Dive into the Katri Eskelin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirka Lampi

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anneli Ritala

VTT Technical Research Centre of Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge