Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Konstantin I. Ivanov is active.

Publication


Featured researches published by Konstantin I. Ivanov.


Cancer Cell | 2008

Transcription Factor PROX1 Induces Colon Cancer Progression by Promoting the Transition from Benign to Highly Dysplastic Phenotype

Tatiana V. Petrova; Antti I. Nykänen; Camilla Norrmén; Konstantin I. Ivanov; Leif C. Andersson; Caj Haglund; Pauli Puolakkainen; Frank Wempe; Harald von Melchner; Gérard Gradwohl; Sakari Vanharanta; Lauri A. Aaltonen; Juha Saharinen; Massimiliano Gentile; Alan Richard Clarke; Jussi Taipale; Guillermo Oliver; Kari Alitalo

The Drosophila transcription factor Prospero functions as a tumor suppressor, and it has been suggested that the human counterpart of Prospero, PROX1, acts similarly in human cancers. However, we show here that PROX1 promotes dysplasia in colonic adenomas and colorectal cancer progression. PROX1 expression marks the transition from benign colon adenoma to carcinoma in situ, and its loss inhibits growth of human colorectal tumor xenografts and intestinal adenomas in Apc(min/+) mice, while its transgenic overexpression promotes colorectal tumorigenesis. Furthermore, in intestinal tumors PROX1 is a direct and dose-dependent target of the beta-catenin/TCF signaling pathway, responsible for the neoplastic transformation. Our data underscore the complexity of cancer pathogenesis and implicate PROX1 in malignant tumor progression through the regulation of cell polarity and adhesion.


The Plant Cell | 2003

Phosphorylation of the Potyvirus Capsid Protein by Protein Kinase CK2 and Its Relevance for Virus Infection

Konstantin I. Ivanov; Pietri Puustinen; Rasa Gabrenaite; Helena Vihinen; Lars Rönnstrand; Leena Valmu; Nisse Kalkkinen; Kristiina Mäkinen

We reported previously that the capsid protein (CP) of Potato virus A (PVA) is phosphorylated both in virus-infected plants and in vitro. In this study, an enzyme that phosphorylates PVA CP was identified as the protein kinase CK2. The α-catalytic subunit of CK2 (CK2α) was purified from tobacco and characterized using in-gel kinase assays and liquid chromatography–tandem mass spectrometry. The tobacco CK2α gene was cloned and expressed in bacterial cells. Specific antibodies were raised against the recombinant enzyme and used to demonstrate the colocalization of PVA CP and CK2α in infected tobacco protoplasts. A major site of CK2 phosphorylation in PVA CP was identified by a combination of mass spectrometric analysis, radioactive phosphopeptide sequencing, and mutagenesis as Thr-242 within a CK2 consensus sequence. Amino acid substitutions that affect the CK2 consensus sequence in CP were introduced into a full-length infectious cDNA clone of PVA tagged with green fluorescent protein. Analysis of the mutant viruses showed that they were defective in cell-to-cell and long-distance movement. Using in vitro assays, we demonstrated that CK2 phosphorylation inhibited the binding of PVA CP to RNA, suggesting a molecular mechanism of CK2 action. These results suggest that the phosphorylation of PVA CP by CK2 plays an important regulatory role in virus infection.


Journal of Biological Chemistry | 2001

Phosphorylation Down-regulates the RNA Binding Function of the Coat Protein of Potato Virus A

Konstantin I. Ivanov; Pietri Puustinen; Andres Merits; Mart Saarma; Kristiina Mäkinen

Plant viruses encode movement proteins (MPs) to facilitate transport of their genomes from infected into neighboring healthy cells through plasmodesmata. Growing evidence suggests that specific phosphorylation events can regulate MP functions. The coat protein (CP) of potato virus A (PVA; genus Potyvirus) is a multifunctional protein involved both in virion assembly and virus movement. Labeling of PVA-infected tobacco leaves with [33P]orthophosphate demonstrated that PVA CP is phosphorylated in vivo. Competition assays established that PVA CP and the well characterized 30-kDa MP of tobacco mosaic virus (genus Tobamovirus) are phosphorylatedin vitro by the same Ser/Thr kinase activity from tobacco leaves. This activity exhibits a strong preference for Mn2+over Mg2+, can be inhibited by micromolar concentrations of Zn2+ and Cd2+, and is not Ca2+-dependent. Tryptic phosphopeptide mapping revealed that PVA CP was phosphorylated by this protein kinase activity on multiple sites. In contrast, PVA CP was not phosphorylated when packaged into virions, suggesting that the phosphorylation sites are located within the RNA binding domain and not exposed on the surface of the virion. Furthermore, two independent experimental approaches demonstrated that the RNA binding function of PVA CP is strongly inhibited by phosphorylation. From these findings, we suggest that protein phosphorylation represents a possible mechanism regulating formation and/or stability of viral ribonucleoproteins in planta.


Journal of Virology | 2002

Detection of the Potyviral Genome-Linked Protein VPg in Virions and Its Phosphorylation by Host Kinases

Pietri Puustinen; Minna-Liisa Rajamäki; Konstantin I. Ivanov; Jari P. T. Valkonen; Kristiina Mäkinen

ABSTRACT The multifunctional genome-linked protein (VPg) of Potato virus A (PVA; genus Potyvirus) was found to be phosphorylated as a part of the virus particle by a cellular kinase activity from tobacco. Immunoprecipitation, immunolabeling, and immunoelectron microscopy experiments showed that VPg is exposed at one end of the virion and it is accessible to protein-protein interactions. Substitution Ser185Leu at the C-proximal part of VPg reduces accumulation of PVA in inoculated leaves of the wild potato species Solanum commersonii and delays systemic infection, which is not observed in tobacco plants. Our data show that kinases of S. commersonii differentially recognize the VPg containing Ser or Leu at position 185, whereas both forms of VPg are similarly recognized by tobacco kinases. Taken together, our data imply that the virion-bound VPg may interact with host proteins and that phosphorylation of VPg may play a role in the VPg-mediated functions during the infection cycle of potyviruses.


Journal of General Virology | 2014

Molecular and cellular mechanisms underlying potyvirus infection

Konstantin I. Ivanov; Katri Eskelin; Andres Lõhmus; Kristiina Mäkinen

Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.


Current Opinion in Virology | 2012

Coat proteins, host factors and plant viral replication

Konstantin I. Ivanov; Kristiina Mäkinen

It was once believed that the sole biological function of viral coat protein (CP) is to encapsidate the viral genome, protecting it from degradation. The past several decades have witnessed a shift in this paradigm towards recognizing CPs as multifunctional proteins involved in almost every stage of the viral infection cycle. Such functional diversity is achieved via specific CP interactions with viral and host components in the infected cell. Different CP functions are tightly regulated both temporally and spatially through a variety of mechanisms including post-translational modifications and competing interactions. In the present review, we summarize the non-structural functions of plant viral CPs, placing special emphasis on their roles in viral genome replication and translation.


Plant Journal | 2016

Molecular insights into the function of the viral RNA silencing suppressor HCPro.

Konstantin I. Ivanov; Katri Eskelin; Marta Bašić; Swarnalok De; Andres Lõhmus; Markku Varjosalo; Kristiina Mäkinen

Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.


Molecular and Cellular Biology | 2013

Phosphorylation Regulates FOXC2-Mediated Transcription in Lymphatic Endothelial Cells

Konstantin I. Ivanov; Yan Agalarov; Leena Valmu; Olga Samuilova; Johanna Liebl; Nawal Houhou; Hélène Maby-El Hajjami; Camilla Norrmén; Muriel Jaquet; Naoyuki Miura; Nadine Zangger; Seppo Ylä-Herttuala; Mauro Delorenzi; Tatiana V. Petrova

ABSTRACT One of the key mechanisms linking cell signaling and control of gene expression is reversible phosphorylation of transcription factors. FOXC2 is a forkhead transcription factor that is mutated in the human vascular disease lymphedema-distichiasis and plays an essential role in lymphatic vascular development. However, the mechanisms regulating FOXC2 transcriptional activity are not well understood. We report here that FOXC2 is phosphorylated on eight evolutionarily conserved proline-directed serine/threonine residues. Loss of phosphorylation at these sites triggers substantial changes in the FOXC2 transcriptional program. Through genome-wide location analysis in lymphatic endothelial cells, we demonstrate that the changes are due to selective inhibition of FOXC2 recruitment to chromatin. The extent of the inhibition varied between individual binding sites, suggesting a novel rheostat-like mechanism by which expression of specific genes can be differentially regulated by FOXC2 phosphorylation. Furthermore, unlike the wild-type protein, the phosphorylation-deficient mutant of FOXC2 failed to induce vascular remodeling in vivo. Collectively, our results point to the pivotal role of phosphorylation in the regulation of FOXC2-mediated transcription in lymphatic endothelial cells and underscore the importance of FOXC2 phosphorylation in vascular development.


FEBS Journal | 2008

Mass spectrometric detection of tyrosine sulfation in human pancreatic trypsinogens, but not in tumor-associated trypsinogen.

Outi Itkonen; Jari Helin; Juhani Saarinen; Nisse Kalkkinen; Konstantin I. Ivanov; Ulf-Håkan Stenman; Leena Valmu

Trypsinogen‐1 and ‐2 are well‐characterized enzymes that are expressed in the pancreas and also in several other tissues. Many cancers produce trypsinogen isoenzymes that differ from the pancreatic ones with respect to substrate specificity and isoelectric point. These tumor‐associated trypsinogens play a pivotal role in cancer progression and metastasis. The differences between these and the pancreatic isoenzymes have been suggested to be caused by post‐translational modification, either sulfation or phosphorylation of a tyrosine residue. We aimed to elucidate the cause of these differences. We isolated trypsinogens from pancreatic juice and conditioned medium from a colon carcinoma cell line. Intact proteins, and tryptic and chymotryptic peptides were characterized by electrospray ionization mass spectrometry. We also used immunoblotting with antibody against phosphotyrosine and N‐terminal sequencing. The results show that pancreatic trypsinogen‐1 and ‐2 are sulfated at Tyr154, whereas tumor‐associated trypsinogen‐2 is not. Detachment of a labile sulfogroup could be demonstrated by both in‐source dissociation and low‐energy collision‐induced dissociation in a tandem mass spectrometer. Tyrosine sulfation is an ubiquitous protein modification occurring in the secretory pathway, but its significance is often underestimated due to difficulties in its analysis. Sulfation is an almost irreversible modification that is thought to regulate protein–protein interactions and the activity of proteolytic enzymes. We conclude that the previously known differences in charge, substrate specificity and inhibitor binding between pancreatic and tumor‐associated trypsinogens are probably caused by sulfation of Tyr154 in pancreatic trypsinogens.


Journal of Virology | 2015

Cotranslational coat protein-mediated inhibition of potyviral RNA translation.

Jane Besong-Ndika; Konstantin I. Ivanov; Anders Hafrén; Thierry Michon; Kristiina Mäkinen

ABSTRACT Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production.

Collaboration


Dive into the Konstantin I. Ivanov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadine Zangger

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge