Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrijn De Brucker is active.

Publication


Featured researches published by Katrijn De Brucker.


Journal of Biological Chemistry | 2007

Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast

Karin Thevissen; Kathryn R. Ayscough; An M. Aerts; Wei Du; Katrijn De Brucker; Els M.K. Meert; Jannie Ausma; Marcel Borgers; Bruno P. A. Cammue; Isabelle François

The antifungal compound miconazole inhibits ergosterol biosynthesis and induces reactive oxygen species (ROS) in susceptible yeast species. To further uncover the mechanism of miconazole antifungal action and tolerance mechanisms, we screened the complete set of haploid Saccharomyces cerevisiae gene deletion mutants for mutants with an altered miconazole sensitivity phenotype. We identified 29 S. cerevisiae genes, which when deleted conferred at least 4-fold hypersensitivity to miconazole. Major functional groups encode proteins involved in tryptophan biosynthesis, membrane trafficking including endocytosis, regulation of actin cytoskeleton, and gene expression. With respect to the antifungal activity of miconazole, we demonstrate an antagonism with tryptophan and a synergy with a yeast endocytosis inhibitor. Because actin dynamics and induction of ROS are linked in yeast, we further focused on miconazole-mediated changes in actin cytoskeleton organization. In this respect, we demonstrate that miconazole induces changes in the actin cytoskeleton, indicative of increased filament stability, prior to ROS induction. These data provide novel mechanistic insights in the mode of action of a ROS-inducing azole.


Journal of Antimicrobial Chemotherapy | 2014

Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms

Nicolas Delattin; Katrijn De Brucker; Katleen Vandamme; Els M.K. Meert; Arnaud Marchand; Patrick Chaltin; Bruno P. A. Cammue; Karin Thevissen

OBJECTIVES Biofilms of Candida species, often formed on medical devices, are generally resistant to currently available antifungal drugs. The aim of this study was to identify compounds that increase the activity of amphotericin B and caspofungin, commonly used antifungal agents, against Candida biofilms. METHODS A library containing off-patent drugs was screened for compounds, termed enhancers, that increase the in vitro activity of amphotericin B against Candida albicans biofilms. Biofilms were grown in 96-well plates and growth was determined by the cell titre blue assay. Synergy between identified enhancers and antifungal agents was further characterized in vitro using fractional inhibitory concentration index (FICI) values and in vivo using a worm biofilm infection model. In light of the application of these enhancers onto implants, their possible effect on the growth potential of MG63 osteoblast-like cells was assessed. RESULTS Pre-incubation of C. albicans biofilms with subinhibitory concentrations of the enhancers drospirenone, perhexiline maleate or toremifene citrate significantly increased the activity of amphotericin B or caspofungin (FICI  < 0.5) against C. albicans and Candida glabrata biofilms. Moreover, these enhancers did not affect the growth potential of osteoblasts. Interestingly, toremifene citrate also enhanced the in vitro activity of caspofungin in a mixed biofilm consisting of C. albicans and Staphylococcus epidermidis. Furthermore, we demonstrate synergy between toremifene citrate and caspofungin in an in vivo worm C. albicans biofilm infection model. CONCLUSIONS Our data demonstrate an in vitro and in vivo enhancement of the antibiofilm activity of caspofungin by toremifene citrate. Furthermore, our results pave the way for implant-related applications of the identified enhancers.


Biochemical Society Transactions | 2011

Apoptosis-inducing antifungal peptides and proteins

Katrijn De Brucker; Bruno P. A. Cammue; Karin Thevissen

Despite the availability of various classes of antimycotics, the treatment of patients with systemic fungal infections is challenging. Therefore the development of new antifungals is urgently required. Promising new antifungal candidates are antimicrobial peptides. In the present review, we provide an overview of antifungal peptides isolated from plants, insects, amphibians and mammals that induce apoptosis. Their antifungal spectrum, mode of action and toxicity are discussed in more detail.


Antimicrobial Agents and Chemotherapy | 2015

Fungal β-1,3-Glucan Increases Ofloxacin Tolerance of Escherichia coli in a Polymicrobial E. coli/Candida albicans Biofilm

Katrijn De Brucker; Yulong Tan; Katlijn Vints; Kaat De Cremer; Annabel Braem; Natalie Verstraeten; Jan Michiels; Jef Vleugels; Bruno P. A. Cammue; Karin Thevissen

ABSTRACT In the past, biofilm-related research has focused mainly on axenic biofilms. However, in nature, biofilms are often composed of multiple species, and the resulting polymicrobial interactions influence industrially and clinically relevant outcomes such as performance and drug resistance. In this study, we show that Escherichia coli does not affect Candida albicans tolerance to amphotericin or caspofungin in an E. coli/C. albicans biofilm. In contrast, ofloxacin tolerance of E. coli is significantly increased in a polymicrobial E. coli/C. albicans biofilm compared to its tolerance in an axenic E. coli biofilm. The increased ofloxacin tolerance of E. coli is mainly biofilm specific, as ofloxacin tolerance of E. coli is less pronounced in polymicrobial E. coli/C. albicans planktonic cultures. Moreover, we found that ofloxacin tolerance of E. coli decreased significantly when E. coli/C. albicans biofilms were treated with matrix-degrading enzymes such as the β-1,3-glucan-degrading enzyme lyticase. In line with a role for β-1,3-glucan in mediating ofloxacin tolerance of E. coli in a biofilm, we found that ofloxacin tolerance of E. coli increased even more in E. coli/C. albicans biofilms consisting of a high-β-1,3-glucan-producing C. albicans mutant. In addition, exogenous addition of laminarin, a polysaccharide composed mainly of poly-β-1,3-glucan, to an E. coli biofilm also resulted in increased ofloxacin tolerance. All these data indicate that β-1,3-glucan from C. albicans increases ofloxacin tolerance of E. coli in an E. coli/C. albicans biofilm.


Antimicrobial Agents and Chemotherapy | 2014

Derivatives of the Mouse Cathelicidin-Related Antimicrobial Peptide (CRAMP) Inhibit Fungal and Bacterial Biofilm Formation

Katrijn De Brucker; Nicolas Delattin; Stijn Robijns; Hans Steenackers; Natalie Verstraeten; Bart Landuyt; Walter Luyten; Liliane Schoofs; Barbara Dovgan; Mirjam Fröhlich; Jan Michiels; Jos Vanderleyden; Bruno P. A. Cammue; Karin Thevissen

ABSTRACT We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 μM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 μM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants.


Antimicrobial Agents and Chemotherapy | 2014

Plant-Derived Decapeptide OSIP108 Interferes with Candida albicans Biofilm Formation without Affecting Cell Viability

Nicolas Delattin; Katrijn De Brucker; David J. Craik; Olivier Cheneval; Mirjam Fröhlich; Matija Veber; Lenart Girandon; Talya R. Davis; Anne E. Weeks; Carol A. Kumamoto; Paul Cos; Tom Coenye; Barbara De Coninck; Bruno P. A. Cammue; Karin Thevissen

ABSTRACT We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation.


Journal of Antimicrobial Chemotherapy | 2016

Covalent immobilization of antimicrobial agents on titanium prevents Staphylococcus aureus and Candida albicans colonization and biofilm formation

Soňa Kucharíková; Evelien Gerits; Katrijn De Brucker; Annabel Braem; Katerina Čeh; Gregor Majdic; Tanja Spanic; Estera Pogorevc; Natalie Verstraeten; Hélène Tournu; Nicolas Delattin; Frédéric Impellizzeri; Martin Erdtmann; Annika Krona; Maria Lövenklev; Miomir Knezevic; Mirjam Fröhlich; Jef Vleugels; Maarten Fauvart; Wander Jose de Silva; Katleen Vandamme; Jordi Garcia-Forgas; Bruno P. A. Cammue; Jan Michiels; Patrick Van Dijck; Karin Thevissen

OBJECTIVES Biofilm-associated implant infections represent a serious public health problem. Covalent immobilization of antimicrobial agents on titanium (Ti), thereby inhibiting biofilm formation of microbial pathogens, is a solution to this problem. METHODS Vancomycin (VAN) and caspofungin (CAS) were covalently bound on Ti substrates using an improved processing technique adapted to large-scale coating of implants. Resistance of the VAN-coated Ti (VAN-Ti) and CAS-coated Ti (CAS-Ti) substrates against in vitro biofilm formation of the bacterium Staphylococcus aureus and the fungal pathogen Candida albicans was determined by plate counting and visualized by confocal laser scanning microscopy. The efficacy of the coated Ti substrates was also tested in vivo using an adapted biomaterial-associated murine infection model in which control-Ti, VAN-Ti or CAS-Ti substrates were implanted subcutaneously and subsequently challenged with the respective pathogens. The osseointegration potential of VAN-Ti and CAS-Ti was examined in vitro using human bone marrow-derived stromal cells, and for VAN-Ti also in a rat osseointegration model. RESULTS In vitro biofilm formation of S. aureus and C. albicans on VAN-Ti and CAS-Ti substrates, respectively, was significantly reduced compared with biofilm formation on control-Ti. In vivo, we observed over 99.9% reduction in biofilm formation of S. aureus on VAN-Ti substrates and 89% reduction in biofilm formation of C. albicans on CAS-Ti substrates, compared with control-Ti substrates. The coated substrates supported osseointegration in vitro and in vivo. CONCLUSIONS These data demonstrate the clinical potential of covalently bound VAN and CAS on Ti to reduce microbial biofilm formation without jeopardizing osseointegration.


Antimicrobial Agents and Chemotherapy | 2015

Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms

Kaat De Cremer; Ellen Lanckacker; Tanne L. Cools; Marijke Bax; Katrijn De Brucker; Paul Cos; Bruno P. A. Cammue; Karin Thevissen

ABSTRACT Mucosal biofilm-related fungal infections are very common, and the incidence of recurrent oral and vulvovaginal candidiasis is significant. As resistance to azoles (the preferred treatment) is occurring, we aimed at identifying compounds that increase the activity of miconazole against Candida albicans biofilms. We screened 1,600 compounds of a drug-repositioning library in combination with a subinhibitory concentration of miconazole. Synergy between the best identified potentiators and miconazole was characterized by checkerboard analyses and fractional inhibitory concentration indices. Hexachlorophene, pyrvinium pamoate, and artesunate act synergistically with miconazole in affecting C. albicans biofilms. Synergy was most pronounced for artesunate and structural homologues thereof. No synergistic effect could be observed between artesunate and fluconazole, caspofungin, or amphotericin B. Our data reveal enhancement of the antibiofilm activity of miconazole by artesunate, pointing to potential combination therapy consisting of miconazole and artesunate to treat C. albicans biofilm-related infections.


Colloids and Surfaces B: Biointerfaces | 2015

Novel anti-infective implant substrates: Controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium

Annabel Braem; Kaat De Cremer; Nicolas Delattin; Katrijn De Brucker; Bram Neirinck; Katleen Vandamme; Johan A. Martens; Jan Michiels; Jef Vleugels; Bruno P. A. Cammue; Karin Thevissen

Bone implants with open porosity enable fast osseointegration, but also present an increased risk of biofilm-associated infections. We design a novel implant material consisting of a mesoporous SiO2 diffusion barrier (pore diameter: 6.4 nm) with controlled drug release functionality integrated in a macroporous Ti load-bearing structure (fully interconnected open porosity: 30%; pore window size: 0.5-2.0 μm). Using an in vitro tool consisting of Ti/SiO2 disks in an insert set-up, through which molecules can diffuse from feed side to release side, a continuous release without initial burst effect of the antibiofilm compound toremifene is sustained for at least 9 days, while release concentrations (up to 17 μM daily) increase with feed concentrations (up to 4mM). Toremifene diffusivity through the SiO2 phase into H2O is estimated around 10(-13)m(2)/s, suggesting configurational diffusion through mesopores. Candida albicans biofilm growth on the toremifene-release side is significantly inhibited, establishing a proof-of-concept for the drug delivery functionality of mesoporous SiO2 incorporated into a high-strength macroporous Ti carrier. Next-generation implants made of this composite material and equipped with an internal reservoir (feed side) can yield long-term controlled release of antibiofilm compounds, effectively treating infections on the implant surface (release side) over a prolonged time.


Antimicrobial Agents and Chemotherapy | 2014

Oral Administration of the Broad-Spectrum Antibiofilm Compound Toremifene Inhibits Candida albicans and Staphylococcus aureus Biofilm Formation In Vivo

Kaat De Cremer; Nicolas Delattin; Katrijn De Brucker; Annelies Peeters; Sona Kucharikova; Evelien Gerits; Natalie Verstraeten; Jan Michiels; Patrick Van Dijck; Bruno P. A. Cammue; Karin Thevissen

ABSTRACT We here report on the in vitro activity of toremifene to inhibit biofilm formation of different fungal and bacterial pathogens, including Candida albicans, Candida glabrata, Candida dubliniensis, Candida krusei, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis. We validated the in vivo efficacy of orally administered toremifene against C. albicans and S. aureus biofilm formation in a rat subcutaneous catheter model. Combined, our results demonstrate the potential of toremifene as a broad-spectrum oral antibiofilm compound.

Collaboration


Dive into the Katrijn De Brucker's collaboration.

Top Co-Authors

Avatar

Karin Thevissen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bruno P. A. Cammue

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nicolas Delattin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kaat De Cremer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Patrick Van Dijck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan Michiels

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Natalie Verstraeten

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jef Vleugels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelien Gerits

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge