Katrin Messerschmidt
University of Potsdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katrin Messerschmidt.
European journal of microbiology and immunology | 2012
Katrin Messerschmidt; S. Hempel; Pamela Holzlöhner; R. G. Ulrich; D. Wagner; Katja Heilmann
Viral proteins are highly antigenic and known as potent stimulators of adaptive immune responses. This mechanism is often used for biotechnological applications in monoclonal antibody production resulting in high-affinity IgG antibodies in most cases. The aim of this study was to increase antigen-specific IgA antibody levels in mice in order to generate monoclonal IgA antibodies by hybridoma technology. For this purpose, hamster polyomavirus (HaPyV) major capsid protein VP1 was used to immunize mice by different routes in order to induce VP1-specific IgA titers. Recombinant HaPyV-VP1 was generated in Escherichia coli and administered intraperitoneally, orally, and intrarectally. VP1-specific antibodies were determined by ELISA in sera and organ culture supernatants. We found a significant increase of HaPyV-VP1-specific IgAs in spleen organ cultures after rectal immunization of mice but not in cultures of mesenteric lymph nodes, colon, or Peyers patches. In contrast, oral and intraperitoneal immunization did not provide an appropriate specific IgA induction at all. These results show that specific IgA antibodies can be induced by intrarectal immunization in the spleen. The generation of monoclonal IgA antibodies with well-defined properties is a useful tool for the investigation of mucosal immune responses or autoimmune diseases and extends the spectrum of antibodies with specific effector functions.
ACS Synthetic Biology | 2017
Gita Naseri; Salma Balazadeh; Fabian Machens; Iman Kamranfar; Katrin Messerschmidt; Bernd Mueller-Roeber
Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.
Molecular Reproduction and Development | 2012
Anne-Katrin Heß; Manuela Bartel; Karina Roth; Katrin Messerschmidt; Katja Heilmann; Ellen Kenchington; Burkhard Micheel; Heiko Stuckas
Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26‐AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male‐specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females.Mol. Reprod. Dev. 79: 517‐524, 2012.
Nature Communications | 2018
Lena Hochrein; Leslie A. Mitchell; Karina Schulz; Katrin Messerschmidt; Bernd Mueller-Roeber
The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a light-controlled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome re-engineering project Sc2.0 or in other recombination-based systems.The International Synthetic Yeast Sc2.0 project has built Cre recombinase sites into synthetic chromosomes, enabling rapid genome evolution. Here the authors demonstrate L-SCRaMbLE, a light-controlled recombinase tool with improved control over recombination events.
Nucleic Acids Research | 2017
Lena Hochrein; Fabian Machens; Katrin Messerschmidt; Bernd Mueller-Roeber
Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
Nucleic Acids Research | 2017
Lena Hochrein; Fabian Machens; Juergen Gremmels; Karina Schulz; Katrin Messerschmidt; Bernd Mueller-Roeber
Abstract The assembly of large DNA constructs coding for entire pathways poses a major challenge in the field of synthetic biology. Here, we present AssemblX, a novel, user-friendly and highly efficient multi-gene assembly strategy. The software-assisted AssemblX process allows even unexperienced users to rapidly design, build and test DNA constructs with currently up to 25 functional units, from 75 or more subunits. At the gene level, AssemblX uses scar-free, overlap-based and sequence-independent methods, allowing the unrestricted design of transcriptional units without laborious parts domestication. The assembly into multi-gene modules is enabled via a standardized, highly efficient, polymerase chain reaction-free and virtually sequence-independent scheme, which relies on rare cutting restriction enzymes and optimized adapter sequences. Selection and marker switching strategies render the whole process reliable, rapid and very effective. The assembly product can be easily transferred to any desired expression host, making AssemblX useful for researchers from various fields.
Molecular Reproduction and Development | 2009
Heiko Stuckas; Katrin Messerschmidt; Sascha Putzler; Otto Baumann; Joerg Schenk; Ralph Tiedemann; Burkhard Micheel
The mussel Mytilus edulis can be used as model to study the molecular basis of reproductive isolation because this species maintains its species integrity, despite of hybridizing in zones of contact with the closely related species M. trossulus or M. galloprovincialis. This study uses selective antibody production by means of hybridoma technology to identify molecules which are involved in sperm function of M. edulis. Fragmented sperm were injected into mice and 25 hybridoma cell clones were established to obtain monoclonal antibodies (mAb). Five clones were identified producing mAb targeting molecules putatively involved in sperm function based on enzyme immunoassays, dot and Western blotting as well as immunostaining of tissue sections. Specific localization of these mAb targets on sperm and partly also in somatic tissue suggests that all five antibodies bind to different molecules. The targets of the mAb obtained from clone G26‐AG8 were identified using mass spectrometry (nano‐LC‐ESI‐MS/MS) as M6 and M7 lysin. These acrosomal proteins have egg vitelline lyses function and are highly similar (76%) which explains the cross reactivity of mAb G26‐AG8. Furthermore, M7 lysin was recently shown to be under strong positive selection suggesting a role in interspecific reproductive isolation. This study shows that M6 and M7 lysin are not only found in the sperm acrosome but also in male somatic tissue of the mantle and the posterior adductor muscle, while being completely absent in females. The monoclonal antibody G26‐AG8 described here will allow elucidating M7/M6 lysin function in somatic and gonad tissue of adult and developing animals. Mol. Reprod. Dev. 76: 4–10, 2009.
Frontiers in Bioengineering and Biotechnology | 2017
Fabian Machens; Salma Balazadeh; Bernd Mueller-Roeber; Katrin Messerschmidt
Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.
Immunology Letters | 2013
Meina Neumann‐Schaal; Katrin Messerschmidt; Nicole Grenz; Katja Heilmann
Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps.
Advances in Experimental Medicine and Biology | 2016
Katja Hanack; Katrin Messerschmidt; Martin Listek
Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology.