Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Rittinger is active.

Publication


Featured researches published by Katrin Rittinger.


Cell | 1997

The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity

Michael B. Yaffe; Katrin Rittinger; Stefano Volinia; Paul R. Caron; Alastair Aitken; Henrik Leffers; Steven J. Gamblin; Stephen J. Smerdon; Lewis C. Cantley

The 14-3-3 family of proteins mediates signal transduction by binding to phosphoserine-containing proteins. Using phosphoserine-oriented peptide libraries to probe all mammalian and yeast 14-3-3s, we identified two different binding motifs, RSXpSXP and RXY/FXpSXP, present in nearly all known 14-3-3 binding proteins. The crystal structure of 14-3-3zeta complexed with the phosphoserine motif in polyoma middle-T was determined to 2.6 A resolution. The bound peptide is in an extended conformation, with a tight turn created by the pS +2 Pro in a cis conformation. Sites of peptide-protein interaction in the complex rationalize the peptide library results. Finally, we show that the 14-3-3 dimer binds tightly to single molecules containing tandem repeats of phosphoserine motifs, implicating bidentate association as a signaling mechanism with molecules such as Raf, BAD, and Cbl.


Molecular Cell | 1999

Structural Analysis of 14-3-3 Phosphopeptide Complexes Identifies a Dual Role for the Nuclear Export Signal of 14-3-3 in Ligand Binding

Katrin Rittinger; Joe Budman; Jian Xu; Stefano Volinia; Lewis C. Cantley; Stephen J. Smerdon; Steven J. Gamblin; Michael B. Yaffe

We have solved the high-resolution X-ray structure of 14-3-3 bound to two different phosphoserine peptides, representing alternative substrate-binding motifs. These structures reveal an evolutionarily conserved network of peptide-protein interactions within all 14-3-3 isotypes, explain both binding motifs, and identify a novel intrachain phosphorylation-mediated loop structure in one of the peptides. A 14-3-3 mutation disrupting Raf signaling alters the ligand-binding cleft, selecting a different phosphopeptide-binding motif and different substrates than the wild-type protein. Many 14-3-3: peptide contacts involve a C-terminal amphipathic alpha helix containing a putative nuclear export signal, implicating this segment in both ligand and Crm1 binding. Structural homology between the 14-3-3 NES structure and those within I kappa B alpha and p53 reveals a conserved topology recognized by the Crm1 nuclear export machinery.


Biochemical Journal | 2005

Activation and assembly of the NADPH oxidase: a structural perspective

Yvonne Groemping; Katrin Rittinger

The NADPH oxidase of professional phagocytes is a crucial component of the innate immune response due to its fundamental role in the production of reactive oxygen species that act as powerful microbicidal agents. The activity of this multi-protein enzyme is dependent on the regulated assembly of the six enzyme subunits at the membrane where oxygen is reduced to superoxide anions. In the resting state, four of the enzyme subunits are maintained in the cytosol, either through auto-inhibitory interactions or through complex formation with accessory proteins that are not part of the active enzyme complex. Multiple inputs are required to disrupt these inhibitory interactions and allow translocation to the membrane and association with the integral membrane components. Protein interaction modules are key regulators of NADPH oxidase assembly, and the protein-protein interactions mediated via these domains have been the target of numerous studies. Many models have been put forward to describe the intricate network of reversible protein interactions that regulate the activity of this enzyme, but an all-encompassing model has so far been elusive. An important step towards an understanding of the molecular basis of NADPH oxidase assembly and activity has been the recent solution of the three-dimensional structures of some of the oxidase components. We will discuss these structures in the present review and attempt to reconcile some of the conflicting models on the basis of the structural information available.


Nature | 2011

SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis

Fumiyo Ikeda; Yonathan Lissanu Deribe; Sigrid S. Skånland; Benjamin Stieglitz; Caroline Grabbe; Mirita Franz-Wachtel; Sjoerd J.L. van Wijk; Panchali Goswami; Vanja Nagy; Janoš Terzić; Fuminori Tokunaga; Ariadne Androulidaki; Tomoko Nakagawa; Manolis Pasparakis; Kazuhiro Iwai; John P. Sundberg; Liliana Schaefer; Katrin Rittinger; Boris Macek; Ivan Dikic

SHARPIN is a ubiquitin-binding and ubiquitin-like-domain-containing protein which, when mutated in mice, results in immune system disorders and multi-organ inflammation. Here we report that SHARPIN functions as a novel component of the linear ubiquitin chain assembly complex (LUBAC) and that the absence of SHARPIN causes dysregulation of NF-κB and apoptotic signalling pathways, explaining the severe phenotypes displayed by chronic proliferative dermatitis (cpdm) in SHARPIN-deficient mice. Upon binding to the LUBAC subunit HOIP (also known as RNF31), SHARPIN stimulates the formation of linear ubiquitin chains in vitro and in vivo. Coexpression of SHARPIN and HOIP promotes linear ubiquitination of NEMO (also known as IKBKG), an adaptor of the IκB kinases (IKKs) and subsequent activation of NF-κB signalling, whereas SHARPIN deficiency in mice causes an impaired activation of the IKK complex and NF-κB in B cells, macrophages and mouse embryonic fibroblasts (MEFs). This effect is further enhanced upon concurrent downregulation of HOIL-1L (also known as RBCK1), another HOIP-binding component of LUBAC. In addition, SHARPIN deficiency leads to rapid cell death upon tumour-necrosis factor α (TNF-α) stimulation via FADD- and caspase-8-dependent pathways. SHARPIN thus activates NF-κB and inhibits apoptosis via distinct pathways in vivo.


Nature | 1997

Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.

Katrin Rittinger; Philip A. Walker; John F. Eccleston; Stephen J. Smerdon; Steven J. Gamblin

Small G proteins of the Rho family, which includes Rho, Rac and Cdc42Hs, regulate phosphorylation pathways that control a range of biological functions including cytoskeleton formation and cell proliferation. They operate as molecular switches, cycling between the biologically active GTP-bound form and the inactive GDP-bound state. Their rate of hydrolysis of GTP to GDP by virtue of their intrinsic GTPase activity is slow, but can be accelerated by up to 105-fold through interaction with rhoGAP, a GTPase-activating protein that stimulates Rho-family proteins,. As such, rhoGAP plays a crucial role in regulating Rho-mediated signalling pathways. Here we report the crystal structure of RhoA and rhoGAP complexed with the transition-state analogue GDP.AlF4−at 1.65 Å resolution. There is a rotation of 20 degrees between the Rho and rhoGAP proteins in this complex when compared with the ground-state complex Cdc42Hs.GMPPNP/rhoGAP, in which Cdc42Hs is bound to the non-hydrolysable GTP analogue GMPPNP. Consequently, in the transition state complex but not in the ground state, the rhoGAP domain contributes a residue, Arg 85GAP, directly into the active site of the G protein. We propose that this residue acts to stabilize the transition state of the GTPase reaction. RhoGAP also appears to function by stabilizing several regions of RhoA that are important in signalling the hydrolysis of GTP.


Cell | 2003

Molecular Basis of Phosphorylation-Induced Activation of the NADPH Oxidase

Yvonne Groemping; Karine Lapouge; Stephen J. Smerdon; Katrin Rittinger

The multi-subunit NADPH oxidase complex plays a crucial role in host defense against microbial infection through the production of reactive oxygen species. Activation of the NADPH oxidase requires the targeting of a cytoplasmic p40-p47-p67(phox) complex to the membrane bound heterodimeric p22-gp91(phox) flavocytochrome. This interaction is prevented in the resting state due to an auto-inhibited conformation of p47(phox). The X-ray structure of the auto-inhibited form of p47(phox) reveals that tandem SH3 domains function together to maintain the cytoplasmic complex in an inactive form. Further structural and biochemical data show that phosphorylation of p47(phox) activates a molecular switch that relieves the inhibitory intramolecular interaction. This permits p47(phox) to interact with the cytoplasmic tail of p22(phox) and initiate formation of the active, membrane bound enzyme complex.


Molecular Cell | 2000

Structure of the TPR Domain of p67phox in Complex with Rac·GTP

Karine Lapouge; Susan J. M. Smith; Philip A. Walker; Steven J. Gamblin; Stephen J. Smerdon; Katrin Rittinger

p67phox is an essential part of the NADPH oxidase, a multiprotein enzyme complex that produces superoxide ions in response to microbial infection. Binding of the small GTPase Rac to p67phox is a key step in the assembly of the active enzyme complex. The structure of Rac.GTP bound to the N-terminal TPR (tetratricopeptide repeat) domain of p67phox reveals a novel mode of Rho family/effector interaction and explains the basis of GTPase specificity. Complex formation is largely mediated by an insertion between two TPR motifs, suggesting an unsuspected versatility of TPR domains in target recognition and in their more general role as scaffolds for the assembly of multiprotein complexes.


Nature | 1997

Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP

Katrin Rittinger; Philip A. Walker; John F. Eccleston; Kurshid Nurmahomed; Darerca Owen; Ernest D. Laue; Steven J. Gamblin; Stephen J. Smerdon

Small G proteins transduce signals from plasma-membrane receptors to control a wide range of cellular functions,. These proteins are clustered into distinct families but all act as molecular switches, active in their GTP-bound form but inactive when GDP-bound. The Rho family of G proteins, which includes Cdc42Hs, activate effectors involved in the regulation of cytoskeleton formation, cell proliferation and the JNK signalling pathway. G proteins generally have a low intrinsic GTPase hydrolytic activity but there are family-specific groups of GTPase-activating proteins (GAPs) that enhance the rate of GTP hydrolysis by up to 105times,. We report here the crystal structure of Cdc42Hs, with the non-hydrolysable GTP analogue GMPPNP, in complex with the GAP domain of p50rhoGAP at 2.7 å resolution. In the complex Cdc42Hs interacts, mainly through its switch I and II regions, with a shallow pocket on rhoGAP which is lined with conserved residues. Arg 85 of rhoGAP interacts with the P-loop of Cdc42Hs, but from biochemical data and by analogy with the G-protein subunit Giα1 (ref. 12), we propose that it adopts a different conformation during the catalytic cycle which enables it to stabilize the transition state of the GTP-hydrolysis reaction.


Nature | 2001

The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways

C Tarricone; Bing Xiao; Neil Justin; Philip A. Walker; Katrin Rittinger; Steve J. Gamblin; Stephen J. Smerdon

Small G proteins are GTP-dependent molecular switches that regulate numerous cellular functions. They can be classified into homologous subfamilies that are broadly associated with specific biological processes. Cross-talk between small G-protein families has an important role in signalling, but the mechanism by which it occurs is poorly understood. The coordinated action of Arf and Rho family GTPases is required to regulate many cellular processes including lipid signalling, cell motility and Golgi function. Arfaptin is a ubiquitously expressed protein implicated in mediating cross-talk between Rac (a member of the Rho family) and Arf small GTPases. Here we show that Arfaptin binds specifically to GTP-bound Arf1 and Arf6, but binds to Rac·GTP and Rac·GDP with similar affinities. The X-ray structure of Arfaptin reveals an elongated, crescent-shaped dimer of three-helix coiled-coils. Structures of Arfaptin with Rac bound to either GDP or the slowly hydrolysable analogue GMPPNP show that the switch regions adopt similar conformations in both complexes. Our data highlight fundamental differences between the molecular mechanisms of Rho and Ras family signalling, and suggest a model of Arfaptin-mediated synergy between the Arf and Rho family signalling pathways.


Journal of Biological Chemistry | 2002

Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox.

Karine Lapouge; Susan J. M. Smith; Yvonne Groemping; Katrin Rittinger

The phagocyte NADPH oxidase is a multiprotein enzyme whose subunits are partitioned between the cytosol and plasma membrane in resting cells. Upon exposure to appropriate stimuli multiple phosphorylation events in the cytosolic components take place, which induce rearrangements in a number of protein-protein interactions, ultimately leading to translocation of the cytoplasmic complex to the membrane. To understand the molecular mechanisms that underlie the assembly and activation process we have carried out a detailed study of the protein-protein interactions that occur in the p40-p47-p67 phox complex of the resting oxidase. Here we show that this complex contains one copy of each protein, which assembles to form a heterotrimeric complex. The apparent high molecular weight of this complex, as observed by gel filtration studies, is due to an extended, non-globular shape rather than to the presence of multiple copies of any of the proteins. Isothermal titration calorimetry measurements of the interactions between the individual components of this complex demonstrate that p67 phox is the primary binding partner of p47 phox in the resting state. These findings, in combination with earlier reports, allow us to propose a model for the architecture of the resting complex in which p67 phox acts as the bridging molecule that connects p40 phox and p47 phox .

Collaboration


Dive into the Katrin Rittinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Divita

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Dikic

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumiyo Ikeda

Institute of Molecular Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Katja K. Dove

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge