Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luigi Martino is active.

Publication


Featured researches published by Luigi Martino.


Nucleic Acids Research | 2006

A new modified thrombin binding aptamer containing a 5′–5′ inversion of polarity site

Luigi Martino; Ada Virno; Antonio Randazzo; Antonella Virgilio; Veronica Esposito; Concetta Giancola; Mariarosaria Bucci; Giuseppe Cirino; Luciano Mayol

The solution structure of a new modified thrombin binding aptamer (TBA) containing a 5′–5′ inversion of polarity site, namely d(3′GGT5′-5′TGGTGTGGTTGG3′), is reported. NMR and CD spectroscopy, as well as molecular dynamic and mechanic calculations, have been used to characterize the 3D structure. The modified oligonucleotide is characterized by a chair-like structure consisting of two G-tetrads connected by three edge-wise TT, TGT and TT loops. d(3′GGT5′-5′TGGTGTGGTTGG3′) is characterized by an unusual folding, being three strands parallel to each other and only one strand oriented in opposite manner. This led to an anti-anti-anti-syn and syn-syn-syn-anti arrangement of the Gs in the two tetrads. The thermal stability of the modified oligonucleotide is 4°C higher than the corresponding unmodified TBA. d(3′GGT5′-5′TGGTGTGGTTGG3′) continues to display an anticoagulant activity, even if decreased with respect to the TBA.


Nature Structural & Molecular Biology | 2013

Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1

Gian Felice De Nicola; Eva Denise Martin; A. Chaikuad; Rekha Bassi; James E. Clark; Luigi Martino; Sharwari Verma; Pierre Sicard; Renée Tata; R. Andrew Atkinson; Stefan Knapp; Maria R. Conte; Michael Marber

p38α mitogen-activated protein kinase (p38α) is activated by a variety of mechanisms, including autophosphorylation initiated by TGFβ-activated kinase 1 binding protein 1 (TAB1) during myocardial ischemia and other stresses. Chemical-genetic approaches and coexpression in mammalian, bacterial and cell-free systems revealed that mouse p38α autophosphorylation occurs in cis by direct interaction with TAB1(371–416). In isolated rat cardiac myocytes and perfused mouse hearts, TAT-TAB1(371–416) rapidly activates p38 and profoundly perturbs function. Crystal structures and characterization in solution revealed a bipartite docking site for TAB1 in the p38α C-terminal kinase lobe. TAB1 binding stabilizes active p38α and induces rearrangements within the activation segment by helical extension of the Thr-Gly-Tyr motif, allowing autophosphorylation in cis. Interference with p38α recognition by TAB1 abolishes its cardiac toxicity. Such intervention could potentially circumvent the drawbacks of clinical pharmacological inhibitors of p38 catalytic activity.


Nucleic Acids Research | 2012

Analysis of the interaction with the hepatitis C virus mRNA reveals an alternative mode of RNA recognition by the human La protein.

Luigi Martino; Simon Pennell; Geoff Kelly; Tam T. T. Bui; Olga Kotik-Kogan; Stephen J. Smerdon; Alex F. Drake; Stephen Curry; Maria R. Conte

Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3′ oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3′ UUUOH trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3′ UUUOH trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3′ oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation.


Molecular and Cellular Biology | 2011

La-Related Protein 4 Binds Poly(A), Interacts with the Poly(A)-Binding Protein MLLE Domain via a Variant PAM2w Motif, and Can Promote mRNA Stability

Ruiqing Yang; Sergei Gaidamakov; Jingwei Xie; Joowon Lee; Luigi Martino; Guennadi Kozlov; Amanda K. Crawford; Amy N. Russo; Maria R. Conte; Kalle Gehring; Richard J. Maraia

ABSTRACT The conserved RNA binding protein La recognizes UUU-3′OH on its small nuclear RNA ligands and stabilizes them against 3′-end-mediated decay. We report that newly described La-related protein 4 (LARP4) is a factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). Yeast two-hybrid analysis and reciprocal immunoprecipitations (IPs) from HeLa cells revealed that LARP4 interacts with RACK1, a 40S ribosome- and mRNA-associated protein. LARP4 cosediments with 40S ribosome subunits and polyribosomes, and its knockdown decreases translation. Mutagenesis of the RNA binding or PABP interaction motifs decrease LARP4 association with polysomes. Several translation and mRNA metabolism-related proteins use a PAM2 sequence containing a critical invariant phenylalanine to make direct contact with the MLLE domain of PABP, and their competition for the MLLE is thought to regulate mRNA homeostasis. Unlike all ∼150 previously analyzed PAM2 sequences, LARP4 contains a variant PAM2 (PAM2w) with tryptophan in place of the phenylalanine. Binding and nuclear magnetic resonance (NMR) studies have shown that a peptide representing LARP4 PAM2w interacts with the MLLE of PABP within the affinity range measured for other PAM2 motif peptides. A cocrystal of PABC bound to LARP4 PAM2w shows tryptophan in the pocket in PABC-MLLE otherwise occupied by phenylalanine. We present evidence that LARP4 expression stimulates luciferase reporter activity by promoting mRNA stability, as shown by mRNA decay analysis of luciferase and cellular mRNAs. We propose that LARP4 activity is integrated with other PAM2 protein activities by PABP as part of mRNA homeostasis.


Nucleic Acids Research | 2010

Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA

Katherine L. D. Hands-Taylor; Luigi Martino; Renée Tata; Jeffrey J. Babon; Tam T. T. Bui; Alex F. Drake; Rebecca L. Beavil; Ger J. M. Pruijn; Paul Brown; Maria R. Conte

Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.


Nucleic Acids Research | 2010

Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures

Veronica Esposito; Luigi Martino; Giuseppe Citarella; Antonella Virgilio; Luciano Mayol; Concetta Giancola; Aldo Galeone

Abasic sites represent the most frequent lesion in DNA. Since several events generating abasic sites concern guanines, this damage is particularly important in quadruplex forming G-rich sequences, many of which are believed to be involved in several biological roles. However, the effects of abasic sites in sequences forming quadruplexes have been poorly studied. Here, we investigated the effects of abasic site mimics on structural, thermodynamic and kinetic properties of parallel quadruplexes. Investigation concerned five oligodeoxynucleotides based on the sequence d(TGGGGGT), in which all guanines have been replaced, one at a time, by an abasic site mimic (dS). All sequences preserve their ability to form quadruplexes; however, both spectroscopic and kinetic experiments point to sequence-dependent different effects on the structural flexibility and stability. Sequences d(TSGGGGT) and d(TGGGGST) form quite stable quadruplexes; however, for the other sequences, the introduction of the dS in proximity of the 3′-end decreases the stability more considerably than the 5′-end. Noteworthy, sequence d(TGSGGGT) forms a quadruplex where dS does not hamper the stacking between the G-tetrads adjacent to it. These results strongly argue for the central role of apurinic/apyrimidinic site damages and they encourage the production of further studies to better delineate the consequences of their presence in the biological relevant regions of the genome.


Biochemistry | 2011

Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family.

Gabriella Fiorentino; Immacolata Del Giudice; Simonetta Bartolucci; Lorenzo Durante; Luigi Martino; Pompea Del Vecchio

The multiple antibiotic resistance regulators (MarR) constitute a family of ligand-responsive transcriptional regulators abundantly distributed throughout the bacterial and archaeal domains. Here we describe the identification and characterization of BldR2, as a new member of this family, in the archaeon Sulfolobus solfataricus and report physiological, biochemical, and biophysical investigation of its stability and DNA binding ability. Transcriptional analysis revealed the upregulation of BldR2 expression by aromatic compounds in the late-logarithmic growth phase and allowed the identification of cis-acting sequences. Our results suggest that BldR2 possesses in solution a dimeric structure and a high stability against both temperature and chemical denaturing agents; the protein binds site specifically to its own promoter, Sso1082, with a micromolar binding affinity at two palindromic sites overlapping TATA-BRE and the transcription start site. Benzaldehyde and salicylate, ligands of MarR members, are antagonists of binding of DNA by BldR2. Moreover, two single-point mutants of BldR2, R19A and A65S, properly designed for obtaining information about the dimerization and the DNA binding sites of the protein, have been produced and characterized. The results point out an involvement of BldR2 in the regulation of the stress response to aromatic compounds and point to arginine 19 as a key amino acid involved in protein dimerization, while the introduction of serine 65 increases the DNA affinity of the protein, making it comparable with those of other members of the MarR family.


Nucleic Acids Research | 2015

Synergic interplay of the La motif, RRM1 and the interdomain linker of LARP6 in the recognition of collagen mRNA expands the RNA binding repertoire of the La module

Luigi Martino; Simon Pennell; Geoff Kelly; Baptiste Busi; Paul Brown; R. Andrew Atkinson; Nicholas J.H. Salisbury; Zi-Hao Ooi; Kang-Wei See; Stephen J. Smerdon; Caterina Alfano; Tam T. T. Bui; Maria R. Conte

The La-related proteins (LARPs) form a diverse group of RNA-binding proteins characterized by the possession of a composite RNA binding unit, the La module. The La module comprises two domains, the La motif (LaM) and the RRM1, which together recognize and bind to a wide array of RNA substrates. Structural information regarding the La module is at present restricted to the prototypic La protein, which acts as an RNA chaperone binding to 3′ UUUOH sequences of nascent RNA polymerase III transcripts. In contrast, LARP6 is implicated in the regulation of collagen synthesis and interacts with a specific stem-loop within the 5′ UTR of the collagen mRNA. Here, we present the structure of the LaM and RRM1 of human LARP6 uncovering in both cases considerable structural variation in comparison to the equivalent domains in La and revealing an unprecedented fold for the RRM1. A mutagenic study guided by the structures revealed that RNA recognition requires synergy between the LaM and RRM1 as well as the participation of the interdomain linker, probably in realizing tandem domain configurations and dynamics required for substrate selectivity. Our study highlights a considerable complexity and plasticity in the architecture of the La module within LARPs.


Journal of the American Chemical Society | 2007

Structural and thermodynamic studies of the interaction of distamycin A with the parallel quadruplex structure [d(TGGGGT)]4

Luigi Martino; Ada Virno; Bruno Pagano; Antonella Virgilio; Simone Di Micco; Aldo Galeone; Concetta Giancola; Giuseppe Bifulco; and Luciano Mayol; Antonio Randazzo


Journal of Physical Chemistry B | 2009

Shedding Light on the Interaction between TMPyP4 and Human Telomeric Quadruplexes

Luigi Martino; Bruno Pagano; Iolanda Fotticchia; Stephen Neidle; Concetta Giancola

Collaboration


Dive into the Luigi Martino's collaboration.

Top Co-Authors

Avatar

Concetta Giancola

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Randazzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonella Virgilio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Bruno Pagano

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luciano Mayol

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Petraccone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Galeone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Daniela Montesarchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giovanni Di Fabio

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge