Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrin Weidenbach is active.

Publication


Featured researches published by Katrin Weidenbach.


PLOS ONE | 2014

The Intestinal Archaea Methanosphaera stadtmanae and Methanobrevibacter smithii Activate Human Dendritic Cells

Corinna Bang; Katrin Weidenbach; Thomas Gutsmann; Holger Heine; Ruth A. Schmitz

The methanoarchaea Methanosphaera stadtmanae and Methanobrevibacter smithii are known to be part of the indigenous human gut microbiota. Although the immunomodulatory effects of bacterial gut commensals have been studied extensively in the last decade, the impact of methanoarchaea in humans health and disease was rarely examined. Consequently, we studied and report here on the effects of M. stadtmanae and M. smithii on human immune cells. Whereas exposure to M. stadtmanae leads to substantial release of proinflammatory cytokines in monocyte-derived dendritic cells (moDCs), only weak activation was detected after incubation with M. smithii. Phagocytosis of M. stadtmanae by moDCs was demonstrated by confocal microscopy as well as transmission electronic microscopy (TEM) and shown to be crucial for cellular activation by using specific inhibitors. Both strains, albeit to different extents, initiate a maturation program in moDCs as revealed by up-regulation of the cell-surface receptors CD86 and CD197 suggesting additional activation of adaptive immune responses. Furthermore, M. stadtmanae and M. smithii were capable to alter the gene expression of antimicrobial peptides in moDCs to different extents. Taken together, our findings strongly argue that the archaeal gut inhabitants M. stadtmanae and M. smithii are specifically recognized by the human innate immune system. Moreover, both strains are capable of inducing an inflammatory cytokine response to different extents arguing that they might have diverse immunomodulatory functions. In conclusion, we propose that the impact of intestinal methanoarchaea on pathological conditions involving the gut microbiota has been underestimated until now.


RNA Biology | 2013

Two CRISPR-Cas systems inMethanosarcina mazeistrain Gö1 display common processing features despite belonging to different types I and III

Lisa Nickel; Katrin Weidenbach; Dominik Jäger; Rolf Backofen; Sita J. Lange; Nadja Heidrich; Ruth A. Schmitz

The clustered regularly interspaced short palindromic repeats (CRISPR) system represents a highly adaptive and heritable defense system against foreign nucleic acids in bacteria and archaea. We analyzed the two CRISPR-Cas systems in Methanosarcina mazei strain Gö1. Although belonging to different subtypes (I-B and III-B), the leaders and repeats of both loci are nearly identical. Also, despite many point mutations in each array, a common hairpin motif was identified in the repeats by a bioinformatics analysis and in vitro structural probing. The expression and maturation of CRISPR-derived RNAs (crRNAs) were studied in vitro and in vivo. Both respective potential Cas6b-type endonucleases were purified and their activity tested in vitro. Each protein showed significant activity and could cleave both repeats at the same processing site. Cas6b of subtype III-B, however, was significantly more efficient in its cleavage activity compared with Cas6b of subtype I-B. Northern blot and differential RNAseq analyses were performed to investigate in vivo transcription and maturation of crRNAs, revealing generally very low expression of both systems, whereas significant induction at high NaCl concentrations was observed. crRNAs derived proximal to the leader were generally more abundant than distal ones and in vivo processing sites were clarified for both loci, confirming the previously well-established 8 nt 5′ repeat tags. The 3′-ends were more diverse, but generally ended in a prefix of the following repeat sequence (3′-tag). The analysis further revealed a 5′-hydroxy and 3′-phosphate termini architecture of small crRNAs specific for cleavage products of Cas6 endonucleases from type I-E and I-F and type III-B.


Molecular Microbiology | 2008

Deletion of the archaeal histone in Methanosarcina mazei Gö1 results in reduced growth and genomic transcription

Katrin Weidenbach; Jens Glöer; Claudia Ehlers; Kathleen Sandman; John N. Reeve; Ruth A. Schmitz

HMm is the only archaeal histone in Methanosarcina mazei Göl and recombinant HMm, synthesized by expression of MM1825 in Escherichia coli, has been purified and confirmed to have the DNA binding and compaction properties characteristic of an archaeal histone. Insertion of a puromycin resistance conferring cassette (pac) into MM1825 was not lethal but resulted in mutants (M. mazei MM1825::pac) that have impaired ability to grow on methanol and trimethylamine. Loss of HMm also resulted in increased sensitivity to UV light and decreased transcript levels for ∼25% of all M. mazei genes. For most genes, the transcript decrease was 3‐ to 10‐fold, but transcripts of MM483 (small heat‐shock protein), MM1688 (trimethylamine:corrinoid methyl transferase) and MM3195 (transcription regulator), were reduced 100‐, 100‐ and 25‐fold, respectively, in M. mazei MM1825::pac cells. Transcripts of only five adjacent genes that appear to constitute an aromatic amino acid biosynthetic operon were elevated in M. mazei MM1825::pac cells. Complementary synthesis of HMm from a plasmid transformed into M. mazei MM1825::pac restored wild‐type growth and transcript levels.


Applied and Environmental Microbiology | 2011

Connection between Multimetal(loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis

Frank Thomas; Roland A. Diaz-Bone; Oliver Wuerfel; Katrin Weidenbach; Ruth A. Schmitz; Reinhard Hensel

ABSTRACT In spite of the significant impact of biomethylation on the mobility and toxicity of metals and metalloids in the environment, little is known about the biological formation of these methylated metal(loid) compounds. While element-specific methyltransferases have been isolated for arsenic, the striking versatility of methanoarchaea to methylate numerous metal(loid)s, including rare elements like bismuth, is still not understood. Here, we demonstrate that the same metal(loid)s (arsenic, selenium, antimony, tellurium, and bismuth) that are methylated by Methanosarcina mazei in vivo are also methylated by in vitro assays with purified recombinant MtaA, a methyltransferase catalyzing the methyl transfer from methylcobalamin [CH3Cob(III)] to 2-mercaptoethanesulfonic acid (CoM) in methylotrophic methanogenesis. Detailed studies revealed that cob(I)alamin [Cob(I)], formed by MtaA-catalyzed demethylation of CH3Cob(III), is the causative agent for the multimetal(loid) methylation observed. Moreover, Cob(I) is also capable of metal(loid) hydride generation. Global transcriptome profiling of M. mazei cultures exposed to bismuth did not reveal induced methyltransferase systems but upregulated regeneration of methanogenic cofactors in the presence of bismuth. Thus, we conclude that the multimetal(loid) methylation in vivo is attributed to side reactions of CH3Cob(III) with reduced cofactors formed in methanogenesis. The close connection between metal(loid) methylation and methanogenesis explains the general capability of methanoarchaea to methylate metal(loid)s.


Archives of Microbiology | 2008

Insights into the NrpR regulon in Methanosarcina mazei Gö1

Katrin Weidenbach; Claudia Ehlers; Jutta Kock; Armin Ehrenreich; Ruth A. Schmitz

The methanogenic archaeon Methanosarcina mazei strain Gö1 contains two homologues of NrpR, the transcriptional repressor of nitrogen assimilation genes recently discovered and characterized in Methanococcus maripaludis. Insertion of a puromycin-resistance conferring cassette into MM1085 encoding a single NrpR domain with an N-terminal helix–turn–helix domain (NrpRI) lead to a significant reduction of the lag-phase after a shift from nitrogen sufficiency to nitrogen limitation. Consistent with this finding, loss of NrpRI resulted in significantly increased transcript levels of genes involved in nitrogen fixation or nitrogen assimilation though growing under nitrogen sufficiency as demonstrated by quantitative reverse transcriptional PCR analysis. Genome-wide analysis using DNA-microarrays confirmed that transcript levels of 27 ORFs were significantly elevated in the M. mazei MM1085::pac mutant under nitrogen sufficiency, including genes known to be up-regulated under nitrogen limitation (e.g., nifH, glnA1, glnK1), and 17 additional genes involved in metabolism (4), encoding a flagella related protein (1) and genes encoding hypothetical proteins (12). Using cell extracts of Escherichia coli expressing MM1085 fused to the maltose binding protein (MBP–NrpRI) and employing promoter binding studies by DNA-affinity chromatography demonstrated that MBP–NrpRI binds specifically to the nifH-promoter. Deletion of various bases in the promoter region of nifH confirmed that the regulatory element ACC-N7-GGT is required for specific binding of NrpRI to the promoter.


Antimicrobial Agents and Chemotherapy | 2012

Effects of Antimicrobial Peptides on Methanogenic Archaea

Corinna Bang; Anke Schilhabel; Katrin Weidenbach; A. Kopp; T. Goldmann; Thomas Gutsmann; Ruth A. Schmitz

ABSTRACT As members of the indigenous human microbiota found on several mucosal tissues, Methanobrevibacter smithii and Methanosphaera stadtmanae are exposed to the effects of antimicrobial peptides (AMPs) secreted by these epithelia. Although antimicrobial and molecular effects of AMPs on bacteria are well described, data for archaea are not available yet. Besides, it is not clear whether AMPs affect them as the archaeal cell envelope differs profoundly in terms of chemical composition and structure from that of bacteria. The effects of different synthetic AMPs on growth of M. smithii, M. stadtmanae, and Methanosarcina mazei were tested using a microtiter plate assay adapted to their anaerobic growth requirements. All three tested methanoarchaea were highly sensitive against derivatives of human cathelicidin, of porcine lysin, and a synthetic antilipopolysaccharide peptide (Lpep); however, sensitivities differed markedly among the methanoarchaeal strains. The potent AMP concentrations affecting growth were below 10 μM, whereas growth of Escherichia coli WBB01 was not affected at peptide concentrations up to 10 μM under the same anaerobic growth conditions. Atomic force microscopy and transmission electron microscopy revealed that the structural integrity of the methanoarchaeal cells is destroyed within 4 h after incubation with AMPs. The disruption of the cell envelope of M. smithii, M. stadtmanae, and M. mazei within a few minutes of exposure was verified by using LIVE/DEAD staining. Our results strongly suggest that the release of AMPs by eukaryotic epithelial cells is a potent defense mechanism targeting not only bacteria, but also methanoarchaea.


FEBS Journal | 2010

NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Gö1

Katrin Weidenbach; Claudia Ehlers; Jutta Kock; Ruth A. Schmitz

We report here on the formation of a complex between the two NrpR homologs present in Methanosarcina mazei Gö1 and their binding properties to the nifH and glnK1 promoters. Reciprocal co‐chromatography demonstrated that NrpRI forms stable complexes with NrpRII (at an NrpRI : NrpRII molar ratio of ∼ 1 : 3), which are not affected by 2‐oxoglutarate. Promoter‐binding, analyses using DNA‐affinity chromatography and electrophoretic gel mobility shift assays, verified that NrpRII is not able to bind to either the nifH promoter or the glnK1 promoter except when in complex with NrpRI. Specific binding of NrpRI to the nifH and glnK1 promoters was shown to be highly sensitive to 2‐oxoglutarate, regardless of whether only NrpRI, or NrpRI in complex with NrpRII, bound to the promoter. Finally, strong interactions between NrpRII and the general transcription factors TATA‐binding proteins (TBP) 1–3 and the general transcription factor TFIIB (TFB) were demonstrated, interactions which are also sensitive to 2‐oxoglutarate. On the basis of these findings we propose the following: under nitrogen sufficiency NrpRII binds from solution to either the nifH promoter or the glnK1 promoter by simultaneously contacting NrpRI and TBP plus TFB, resulting in full repression of transcription; whereas, under nitrogen limitation, increasing 2‐oxoglutarate concentrations significantly decrease the binding of NrpRI to the operator as well as the binding of NrpRII to TBP and TFB, ultimately allowing recruitment of RNA polymerase to the promoter.


Journal of Virology | 2017

Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains

Katrin Weidenbach; Lisa Nickel; Horst Neve; Omer S. Alkhnbashi; Sven Künzel; Anne Kupczok; Thorsten Bauersachs; Liam Cassidy; Andreas Tholey; Rolf Backofen; Ruth A. Schmitz

ABSTRACT A novel archaeal lytic virus targeting species of the genus Methanosarcina was isolated using Methanosarcina mazei strain Gö1 as the host. Due to its spherical morphology, the virus was designated Methanosarcina spherical virus (MetSV). Molecular analysis demonstrated that MetSV contains double-stranded linear DNA with a genome size of 10,567 bp containing 22 open reading frames (ORFs), all oriented in the same direction. Functions were predicted for some of these ORFs, i.e., such as DNA polymerase, ATPase, and DNA-binding protein as well as envelope (structural) protein. MetSV-derived spacers in CRISPR loci were detected in several published Methanosarcina draft genomes using bioinformatic tools, revealing a potential protospacer-adjacent motif (PAM) motif (TTA/T). Transcription and expression of several predicted viral ORFs were validated by reverse transcription-PCR (RT-PCR), PAGE analysis, and liquid chromatography-mass spectrometry (LC-MS)-based proteomics. Analysis of core lipids by atmospheric pressure chemical ionization (APCI) mass spectrometry showed that MetSV and Methanosarcina mazei both contain archaeol and glycerol dialkyl glycerol tetraether without a cyclopentane moiety (GDGT-0). The MetSV host range is limited to Methanosarcina strains growing as single cells (M. mazei, Methanosarcina barkeri and Methanosarcina soligelidi). In contrast, strains growing as sarcina-like aggregates were apparently protected from infection. Heterogeneity related to morphology phases in M. mazei cultures allowed acquisition of resistance to MetSV after challenge by growing cultures as sarcina-like aggregates. CRISPR/Cas-mediated resistance was excluded since neither of the two CRISPR arrays showed MetSV-derived spacer acquisition. Based on these findings, we propose that changing the morphology from single cells to sarcina-like aggregates upon rearrangement of the envelope structure prevents infection and subsequent lysis by MetSV. IMPORTANCE Methanoarchaea are among the most abundant organisms on the planet since they are present in high numbers in major anaerobic environments. They convert various carbon sources, e.g., acetate, methylamines, or methanol, to methane and carbon dioxide; thus, they have a significant impact on the emission of major greenhouse gases. Today, very little is known about viruses specifically infecting methanoarchaea that most probably impact the abundance of methanoarchaea in microbial consortia. Here, we characterize the first identified Methanosarcina-infecting virus (MetSV) and show a mechanism for acquiring resistance against MetSV. Based on our results, we propose that growth as sarcina-like aggregates prevents infection and subsequent lysis. These findings allow new insights into the virus-host relationship in methanogenic community structures, their dynamics, and their phase heterogeneity. Moreover, the availability of a specific virus provides new possibilities to deepen our knowledge of the defense mechanisms of potential hosts and offers tools for genetic manipulation.


FEBS Journal | 2014

The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen‐limited conditions

Katrin Weidenbach; Claudia Ehlers; Ruth A. Schmitz

With the aim of unraveling their potential involvement in the regulation of nitrogen metabolism in Methanosarcina mazei strain Gö1, we characterized five genes that are differentially transcribed in response to changing nitrogen availability and encoding putative transcriptional regulators. Study of the respective mutant strains under nitrogen‐limited conditions revealed a growth delay for M. mazei MM0444::pac and MM1708::pac, and strongly reduced diazotrophic growth for MM0872::pac, whereas the absence of MM2441 or MM2525 did not affect growth behaviour. Transcriptome analyses further demonstrated that only MM1708 – encoding a CxxCG zinc finger protein – plays a regulatory role in nitrogen metabolism, most likely by specifically enhancing transcription of the N2 fixation (nif) operon under nitrogen‐limited conditions. In agreement with this, a palindromic binding motif was predicted in silico in the nifH promoter region, nine nucleotides upstream of the BRE box, and confirmed to bind purified maltose‐binding protein–MM1708 by electromobility shift assays. As MM1708 itself is under the control of the global nitrogen repressor NrpR, this adds a secondary level to the transcriptional regulation of the nif genes, and is most likely crucial for maximal nif induction under nitrogen‐limited conditions. This is in accordance with the finding that protein expression of NifH is highly reduced in the absence of MM1708 under nitrogen‐limited conditions. On the basis of our findings, we hypothesize that, in M. mazei, nitrogen fixation is controlled by a hierarchical network of two transcriptional regulators, the global nitrogen repressor NrpR, and the newly identified activator NrpA (MM1708), thereby providing tight control of N2 fixation.


RNA Biology | 2018

Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1.

Lisa Nickel; Andrea Ulbricht; Omer S. Alkhnbashi; Konrad U. Förstner; Liam Cassidy; Katrin Weidenbach; Rolf Backofen; Ruth A. Schmitz

ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive defense system against foreign nucleic acids. In the methanoarchaeon Methanosarcina mazei Gö1, two types of CRISPR-Cas systems are present (type I-B and type III-C). Both loci encode a Cas6 endonuclease, Cas6b-IB and Cas6b-IIIC, typically responsible for maturation of functional short CRISPR RNAs (crRNAs). To evaluate potential cross cleavage activity, we biochemically characterized both Cas6b proteins regarding their crRNA binding behavior and their ability to process pre-crRNA from the respective CRISPR array in vivo. Maturation of crRNA was studied in the respective single deletion mutants by northern blot and RNA-Seq analysis demonstrating that in vivo primarily Cas6b-IB is responsible for crRNA processing of both CRISPR arrays. Tentative protein level evidence for the translation of both Cas6b proteins under standard growth conditions was detected, arguing for different activities or a potential non-redundant role of Cas6b-IIIC within the cell. Conservation of both Cas6 endonucleases was observed in several other M. mazei isolates, though a wide variety was displayed. In general, repeat and leader sequence conservation revealed a close correlation in the M. mazei strains. The repeat sequences from both CRISPR arrays from M. mazei Gö1 contain the same sequence motif with differences only in two nucleotides. These data stand in contrast to all other analyzed M. mazei isolates, which have at least one additional CRISPR array with repeats belonging to another sequence motif. This conforms to the finding that Cas6b-IB is the crucial and functional endonuclease in M. mazei Gö1. Abbreviations: sRNA: small RNA; crRNA: CRISPR RNA; pre-crRNAs: Precursor CRISPR RNA; CRISPR: clustered regularly interspaced short palindromic repeats; Cas: CRISPR associated; nt: nucleotide; RNP: ribonucleoprotein; RBS: ribosome binding site

Collaboration


Dive into the Katrin Weidenbach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge