Katrin Wudy
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katrin Wudy.
PROCEEDINGS OF PPS-29: The 29th International Conference of the Polymer Processing Society - Conference Papers | 2014
Katrin Wudy; D. Drummer; F. Kühnlein; M. Drexler
Additive manufacturing technologies, such as selective laser melting of polymers enable manufacturing of complex parts without tools and forms. Due to high temperature during processing, a degradation of the used plastic powder occurs. The unmolded material in the building chamber, the so-called partcake, can be removed from the finished component after building and reused for another process. To realize reproducible part properties refreshing of partcake powder is necessary. This paper presents results on the investigations of degradation behavior of polyamide 12 powder during selective laser melting process. The influence of different ambient conditions, e.g. ambient air, nitrogen and vacuum, is investigated in a model experiment. Oven aged polymer powders were analyzed with regard to their process relevant material properties. Considered material properties are phase transition temperatures, melting viscosity or molecular weight. The results of the investigations show, that the influence of high process temperatures on used material can be reduced using other ambient conditions. Process relevant material properties are minor affected by storage under vacuum. In addition to that the influence of different ambient conditions as well as a material pretreatment on the degradation behavior of sls materials, e.g. exclusion of intermolecular located oxygen, is analyzed. To correlate these results of the model experiment with real manufacturing process laser sintering experiments are done. PA12 powder is used for several building processes with refreshing. Produced specimens and resulting partcake powder are analyzed and correlated to the results of model experiment. Correlating effects, regarding process relevant material properties as well as aging influenced mechanical properties of specimens can be detected.
PROCEEDINGS OF PPS-29: The 29th International Conference of the Polymer Processing Society - Conference Papers | 2014
Katrin Wudy; Dietmar Drummer; Maximilian Drexler
Concerning individualization, the requirements to products have increased. The trend towards individualized serial products faces manufacturing techniques with demands of increasing flexibility. Additive manufacturing techniques generate components directly out of a CAD data set while requiring no specific tool or form. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. With a variety of available additive manufacturing techniques, some of them have a high potential to generate series products with reproducible properties. Selective laser melting (SLM) of powder materials shows the highest potential for this application. If components made by SLM are desired to be applied in technical series products, their achievable properties play a major part. These properties are mainly determined by the processed materials. The range of present commercially available materials for SLM of polymer powders is limited. This paper shows interrelations of various material properties to create a basic understanding of sintering processes and additional qualifying new materials. Main properties of polymer materials, with regard to their consolidation are viscosity and surface energy. On the one hand the difference of the surface energy between powder and melt influences, the wetting behavior, and thus the penetration depth. On the other hand, a high surface tension is fundamental for good coalescence of bordering particles. To fulfill these requirements limits of the surface tension will be determined on the basis of a reference material. For these reason methods for determining surface tension of solids, powders and melts are analyzed, to carry out a possible process-related material characterization. Not only an insight into observed SLM phenomena is provided but also hints concerning suitable material selection.
Journal of Laser Applications | 2014
Tobias Laumer; Katrin Wudy; Maximilian Drexler; Philipp Amend; Stephan Roth; Dietmar Drummer; Michael Schmidt
By selective laser sintering (SLS), polymer powders are molten layer by layer to build conventional prototypes or parts in small series with geometrical freedom that cannot be achieved by other manufacturing technologies. The SLS process is mainly defined by the beam–matter interaction between powder material, laser radiation and different material characteristics by itself. However the determination of these different material characteristics is problematic because powder material imposes certain requirements that cannot sufficiently be provided by conventional measurement methods. Hence new fundamental investigation methods to determine the optical and thermal material characteristics like the thermal diffusivity, thermal conductivity, or the influence of different heating rates on the melting behavior are presented in this paper. The different analysis methods altogether improve the process of understanding to allow recommendations for the future process controlling.
PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers | 2015
Dietmar Drummer; Maximilian Drexler; Katrin Wudy
The selective laser melting of polymer powder is for rapid prototyping applications an established technology, although a lack in basic process knowledge appears. Considering demands of series production the selective laser melting technique is faced with varies challenges concerning processable material systems, process strategies and part properties. Consequently basic research is necessary to shift from rapid prototyping to rapid manufacturing of small lot sized series. Based on basic research the high potential of selective laser melting for the production of complex parts without any tools can be opened up. For the derivation of part quality increasing process strategies knowledge about interactions between sub-processes of selective laser melting and resulting part properties is necessary. The selective laser melting consists of three major sub-processes: Geometry exposure, tempering and powder feeding. According to the interaction of sub-processes resulting temperature fields during the selective laser melting process determine the part properties by changing micro structural pore number and distribution. Beneath absolute temperatures also the time-dependency of the thermal fields influences the porosity of molten parts. Present process strategies tend to decrease building time by increasing scanning speed and laser power. Although the absolute energy input into the material is constant for increasing scanning speed and laser power in the same ratio, time dependent material effects are neglected. The heating rate is a combined parameter derived from absolute temperature and time. Within the paper the authors analyze the basic interactions between different heating rates and part properties (e.g. porosity, mechanical strengths). Therefore with different heating rates produced specimens are analyzed with imaging technologies as well as mechanical tests. Based on the done basic investigations new heating rate dependent process strategies can be established considering time dependent material behavior.
PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers | 2015
Dietmar Drummer; Katrin Wudy; Maximilian Drexler
Concerning individualization, the requirements to products have increased. Additive manufacturing technologies, such as selective laser melting allow manufacturing of complex parts without tools and forms. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. Due to the high temperature during processing, a degradation of the used plastic powder occurs. The non-molten material in the building chamber, the so-called partcake, can be removed after building from the finished component and reused for another process. To realize reproducible part properties refreshing of partcake powder with 30 up to 50 % virgin powder is necessary. However, these refreshing strategies lead to varying component properties due to an undefined aging state. Previous investigations on oven aged powder for selective laser melting showed for short periods of storage near the melting point thermally induced post condensation is the predomina...
Polymers | 2018
Meng Zhao; Katrin Wudy; Dietmar Drummer
Selective laser sintering (SLS) of thermoplastic materials is an additive manufacturing process that overcomes the boundary between prototype construction and functional components. This technique also meets the requirements of traditional and established production processes. Crystallization behavior is one of the most critical properties during the cooling process and needs to be fully understood. Due to the huge influence of crystallization on the mechanical and thermal properties, it is important to investigate this process more closely. A commercial SLS polyamide (PA12) powder was measured with differential scanning calorimetry (DSC) to model a wider temperature range. To model isothermal crystallization between 160 and 168 °C, the Avrami model was used to determine the degree of crystallization. For non-isothermal crystallization between 0.2 and 20 K/min, different models were compared including the Ozawa, Jeziory, and Nakamura equations.
PROCEEDINGS OF PPS-31: The 31st International Conference of the Polymer Processing Society – Conference Papers | 2016
Jochen Schmidt; Marius Sachs; Meng Zhao; Stephanie Fanselow; Katrin Wudy; Maximilian Drexler; Dietmar Drummer; Karl-Ernst Wirth; Wolfgang Peukert
Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a fa...
Polymers | 2018
Fuad Osmanlic; Katrin Wudy; Tobias Laumer; Michael Schmidt; Dietmar Drummer; Carolin Körner
In order to understand the absorption characteristic, a ray trace model is developed by taking into account the reflection, absorption and refraction. The ray paths are resolved on a sub-powder grid. For validation, the simulation results are compared to analytic solutions of the irradiation of the laser beam onto a plain surface. In addition, the absorptance, reflectance and transmittance of PA12 powder layers measured by an integration sphere setup are compared with the numerical results of our model. It is shown that the effective penetration depth can be lower than the penetration depth in bulk material for polymer powders and, therefore, can increase the energy density at the powder bed surface. The implications for modeling of the selective laser sintering (SLS) process and the processability of fine powder distributions and high powder bed densities are discussed.
Journal of Polymer Engineering | 2018
Andreas Wörz; Katrin Wudy; Dietmar Drummer; Andreas Wegner; Gerd Witt
Abstract Selective laser sintering (SLS) of polymers is on the edge from a pure prototyping technique to a small-scale production. For this transition, characteristic values such as long-term properties, and thus the degradation mechanism, are crucial factors for enabling a series application. Due to the specific characteristics of SLS parts like porosity and rough surfaces, a direct transfer of known mechanisms and models for injection molded (IM) parts is not or just to a limited extent possible. This leads to the aim of this paper, which is to investigate and compare the degradation behavior of polyamide 12 parts produced by SLS and IM.
Journal of Polymer Engineering | 2018
Maximilian Drexler; Sandra Greiner; Matthias Lexow; Lydia Lanzl; Katrin Wudy; Dietmar Drummer
Abstract For the derivation of part quality increasing process strategies, knowledge about interactions between sub-processes of selective laser melting (SLM) and resulting part properties is necessary. The SLM process consists of three major sub-processes: powder coating, exposure, and material consolidation. According to the interaction of sub-processes, resulting processing conditions during SLM determine the part properties by changing micro structural pore number and distribution. In addition to absolute temperatures, the time-dependency of the thermal fields also influences the porosity of molten parts. Present process strategies tend to decrease building time by acceleration of the subprocesses. Apart from prior investigated acceleration of the exposure, the powder coating step is focused. Within the paper, the authors analyze the basic interactions between different coating parameters and part properties. The authors estimate an interaction between coating speed and resulting part properties due to a force impact caused by the moved coating mechanism. Therefore, specimens produced with different coating speeds are analyzed with imaging technologies as well as mechanical tests. Based on the investigations, new processing strategies can be established considering the forces applied to the powder bed during the coating process, as well as the unique compaction behavior of current and future used powders.