Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrina A.B. Goddard is active.

Publication


Featured researches published by Katrina A.B. Goddard.


American Journal of Human Genetics | 2000

Linkage Disequilibrium and Allele-Frequency Distributions for 114 Single-Nucleotide Polymorphisms in Five Populations

Katrina A.B. Goddard; Penelope J. Hopkins; Jeff Hall; John S. Witte

Single-nucleotide polymorphisms (SNPs) may be extremely important for deciphering the impact of genetic variation on complex human diseases. The ultimate value of SNPs for linkage and association mapping studies depends in part on the distribution of SNP allele frequencies and intermarker linkage disequilibrium (LD) across populations. Limited information is available about these distributions on a genomewide scale, particularly for LD. Using 114 SNPs from 33 genes, we compared these distributions in five American populations (727 individuals) of African, European, Chinese, Hispanic, and Japanese descent. The allele frequencies were highly correlated across populations but differed by >20% for at least one pair of populations in 35% of SNPs. The correlation in LD was high for some pairs of populations but not for others (e.g., Chinese American or Japanese American vs. any other population). Regardless of population, average minor-allele frequencies were significantly higher for SNPs in noncoding regions (20%-25%) than for SNPs in coding regions (12%-16%). Interestingly, we found that intermarker LD may be strongest with pairs of SNPs in which both markers are nonconservative substitutions, compared to pairs of SNPs where at least one marker is a conservative substitution. These results suggest that population differences and marker location within the gene may be important factors in the selection of SNPs for use in the study of complex disease with linkage or association mapping methods.


American Journal of Human Genetics | 2001

Model-Free Linkage Analysis with Covariates Confirms Linkage of Prostate Cancer to Chromosomes 1 and 4

Katrina A.B. Goddard; John S. Witte; Brian K. Suarez; William J. Catalona; Jane M. Olson

As with many complex genetic diseases, genome scans for prostate cancer have given conflicting results, often failing to provide replication of previous findings. One factor contributing to the lack of consistency across studies is locus heterogeneity, which can weaken or even eliminate evidence for linkage that is present only in a subset of families. Currently, most analyses either fail to account for locus heterogeneity or attempt to account for it only by partitioning data sets into smaller and smaller portions. In the present study, we model locus heterogeneity among affected sib pairs with prostate cancer by including covariates in the linkage analysis that serve as surrogate measures of between-family linkage differences. The model is a modification of the Olson conditional logistic model for affected relative pairs. By including Gleason score, age at onset, male-to-male transmission, and/or number of affected first-degree family members as covariates, we detected linkage near three locations that were previously identified by linkage (1q24-25 [HPC1; LOD score 3.25, P=.00012], 1q42.2-43 [PCAP; LOD score 2.84, P=.0030], and 4q [LOD score 2.80, P=.00038]), near the androgen-receptor locus on Xq12-13 (AR; LOD score 3.06, P=.00053), and at five new locations (LOD score > 2.5). Without covariates, only a few weak-to-moderate linkage signals were found, none of which replicate findings of previous genome scans. We conclude that covariate-based linkage analysis greatly improves the likelihood that linked regions will be found by incorporation of information about heterogeneity within the sample.


Gut | 2002

Familial aggregation of Barrett’s oesophagus, oesophageal adenocarcinoma, and oesophagogastric junctional adenocarcinoma in Caucasian adults

Amitabh Chak; T Lee; Margaret Kinnard; Wendy Brock; Ashley L. Faulx; Joseph Willis; Gregory S. Cooper; Michael V. Sivak; Katrina A.B. Goddard

Background: Although familial clusters of Barrett’s oesophagus and oesophageal adenocarcinoma have been reported, a familial predisposition to these diseases has not been systematically investigated. Aims: To determine whether Barrett’s oesophagus and oesophageal (or oesophagogastric junctional) adenocarcinoma aggregate in families. Patients and methods: A structured questionnaire eliciting details on reflux symptoms, exposure history, and family history was given to Caucasian case (n=58) subjects with Barrett’s oesophagus, oesophageal adenocarcinoma, or oesophagogastric junctional adenocarcinoma, and to Caucasian control (n=106) subjects with symptomatic gastro-oesophageal reflux disease without Barrett’s oesophagus. Reported diagnoses of family members were confirmed by review of medical records. Results: The presence of a positive family history (that is, first or second degree relative with Barrett’s oesophagus, oesophageal adenocarcinoma, or oesophagogastric junctional adenocarcinoma) was significantly higher among case subjects compared with controls (24% v 5%; p<0.005). Case subjects were more likely to be older (p<0.001) and male (74% v 43% male; p<0.0005) compared with control subjects. In a multivariate logistic regression analysis, family history was independently associated with the presence of Barrett’s oesophagus, oesophageal adenocarcinoma, or oesophagogastric junctional adenocarcinoma (odds ratio 12.23, 95% confidence interval 3.34–44.76) after adjusting for age, sex, and the presence of obesity 10 or more years prior to study enrolment. Conclusions: Individuals with Barrett’s oesophagus, oesophageal adenocarcinoma, or oesophagogastric junctional adenocarcinoma are more likely to have a positive family history of Barrett’s oesophagus, oesophageal adenocarcinoma, or oesophagogastric junctional adenocarcinoma than individuals without Barrett’s oesophagus, oesophageal adenocarcinoma, or oesophagogastric junctional adenocarcinoma. A positive family history should be considered when making decisions about screening endoscopy in patients with symptoms of gastro-oesophageal reflux.


Nature Genetics | 2011

Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2

Fred A. Wright; Lisa J. Strug; Vishal K. Doshi; Clayton W. Commander; Scott M. Blackman; Lei Sun; Yves Berthiaume; David J. Cutler; Andreea L Cojocaru; J. Michael Collaco; Mary Corey; Ruslan Dorfman; Katrina A.B. Goddard; Deanna M. Green; Jack W. Kent; Ethan M. Lange; Seunggeun Lee; Weili Li; Jingchun Luo; Gregory Mayhew; Kathleen M. Naughton; Rhonda G. Pace; Peter D. Paré; Johanna M. Rommens; Andrew J. Sandford; Jaclyn R. Stonebraker; Wei Sun; Chelsea Taylor; Lori L. Vanscoy; Fei Zou

A combined genome-wide association and linkage study was used to identify loci causing variation in cystic fibrosis lung disease severity. We identified a significant association (P = 3.34 × 10−8) near EHF and APIP (chr11p13) in p.Phe508del homozygotes (n = 1,978). The association replicated in p.Phe508del homozygotes (P = 0.006) from a separate family based study (n = 557), with P = 1.49 × 10−9 for the three-study joint meta-analysis. Linkage analysis of 486 sibling pairs from the family based study identified a significant quantitative trait locus on chromosome 20q13.2 (log10 odds = 5.03). Our findings provide insight into the causes of variation in lung disease severity in cystic fibrosis and suggest new therapeutic targets for this life-limiting disorder.


Diabetes | 2007

Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: The Family Investigation of Nephropathy and Diabetes (FIND)

Sudha K. Iyengar; Hanna E. Abboud; Katrina A.B. Goddard; Mohammed F. Saad; Sharon G. Adler; Nedal H. Arar; Donald W. Bowden; Ravi Duggirala; Robert C. Elston; Robert L. Hanson; Eli Ipp; W.H. Linda Kao; Paul L. Kimmel; Michael J. Klag; William C. Knowler; Lucy A. Meoni; Robert G. Nelson; Susanne B. Nicholas; Madeleine V. Pahl; Rulan S. Parekh; Shannon R E Quade; Stephen S. Rich; Jerome I. Rotter; Marina Scavini; Jeffrey R. Schelling; John R. Sedor; Ashwini R. Sehgal; Vallabh O. Shah; Michael W. Smith; Kent D. Taylor

The Family Investigation of Nephropathy and Diabetes (FIND) was initiated to map genes underlying susceptibility to diabetic nephropathy. A total of 11 centers participated under a single collection protocol to recruit large numbers of diabetic sibling pairs concordant and discordant for diabetic nephropathy. We report the findings from the first-phase genetic analyses in 1,227 participants from 378 pedigrees of European-American, African-American, Mexican-American, and American Indian descent recruited from eight centers. Model-free linkage analyses, using a dichotomous definition for diabetic nephropathy in 397 sibling pairs, as well as the quantitative trait urinary albumin-to-creatinine ratio (ACR), were performed using the Haseman-Elston linkage test on 404 microsatellite markers. The strongest evidence of linkage to the diabetic nephropathy trait was on chromosomes 7q21.3, 10p15.3, 14q23.1, and 18q22.3. In ACR (883 diabetic sibling pairs), the strongest linkage signals were on chromosomes 2q14.1, 7q21.1, and 15q26.3. These results confirm regions of linkage to diabetic nephropathy on chromosomes 7q, 10p, and 18q from prior reports, making it important that genes underlying these peaks be evaluated for their contribution to nephropathy susceptibility. Large family collections consisting of multiple members with diabetes and advanced nephropathy are likely to accelerate the identification of genes causing diabetic nephropathy, a life-threatening complication of diabetes.


American Journal of Human Genetics | 2002

A Second Locus for Very-Late-Onset Alzheimer Disease: A Genome Scan Reveals Linkage to 20p and Epistasis between 20p and the Amyloid Precursor Protein Region

Jane M. Olson; Katrina A.B. Goddard; Doreen M. Dudek

We used a covariate-based linkage method to reanalyze genome scan data from affected sibships collected by the Alzheimer Disease (AD) Genetics Initiative of the National Institute of Mental Health. As reported in an earlier article, the amyloid-beta precursor protein (APP) region is strongly linked to affected sib pairs of the oldest current age (i.e., age either at last exam or at death) who lack E4 alleles at the apolipoprotein E (ApoE) locus. We now report that a region on 20p shows the same pattern. A model that includes current age and the number of E2 alleles as covariates gives a LOD score of 4.1. The signal on 20p is near the location of the gene coding for cystatin-C, previously shown to be associated with late-onset AD and to codeposit with APP in the brains of patients with AD. Two-locus analysis provides evidence of strong epistasis between 20p and the APP region, limited to the oldest age group and to those lacking ApoE4 alleles. We speculate that high-risk polymorphisms in both regions produce a biological interaction between these two proteins that increases susceptibility to a very-late-onset form of AD.


Human Heredity | 2007

Candidate-Gene Association Study of Mothers with Pre-Eclampsia, and Their Infants, Analyzing 775 SNPs in 190 Genes

Katrina A.B. Goddard; Gerard Tromp; Roberto Romero; Jane M. Olson; Qing Lu; Zhiying Xu; Neeta Parimi; Jyh Kae Nien; Ricardo Gomez; Ernesto Behnke; Margarita Solari; Jimmy Espinoza; Joaquin Santolaya; Tinnakorn Chaiworapongsa; Guy M. Lenk; Kimberly Volkenant; Madan Kumar Anant; Benjamin A. Salisbury; Janet L Carr; Min Soeb Lee; Gerald F. Vovis; Helena Kuivaniemi

Pre-eclampsia (PE) affects 5–7% of pregnancies in the US, and is a leading cause of maternal death and perinatal morbidity and mortality worldwide. To identify genes with a role in PE, we conducted a large-scale association study evaluating 775 SNPs in 190 candidate genes selected for a potential role in obstetrical complications. SNP discovery was performed by DNA sequencing, and genotyping was carried out in a high-throughput facility using the MassARRAYTM System. Women with PE (n = 394) and their offspring (n = 324) were compared with control women (n = 602) and their offspring (n = 631) from the same hospital-based population. Haplotypes were estimated for each gene using the EM algorithm, and empirical p values were obtained for a logistic regression-based score test, adjusted for significant covariates. An interaction model between maternal and offspring genotypes was also evaluated. The most significant findings for association with PE were COL1A1 (p = 0.0011) and IL1A (p = 0.0014) for the maternal genotype, and PLAUR (p = 0.0008) for the offspring genotype. Common candidate genes for PE, including MTHFR and NOS3, were not significantly associated with PE. For the interaction model, SNPs within IGF1 (p = 0.0035) and IL4R (p = 0.0036) gave the most significant results. This study is one of the most comprehensive genetic association studies of PE to date, including an evaluation of offspring genotypes that have rarely been considered in previous studies. Although we did not identify statistically significant evidence of association for any of the candidate loci evaluated here after adjusting for multiple testing using the false discovery rate, additional compelling evidence exists, including multiple SNPs with nominally significant p values in COL1A1 and the IL1A region, and previous reports of association for IL1A, to support continued interest in these genes as candidates for PE. Identification of the genetic regulators of PE may have broader implications, since women with PE are at increased risk of death from cardiovascular diseases later in life.


Diabetes | 2008

Genome-Wide Scan for Estimated Glomerular Filtration Rate in Multi-Ethnic Diabetic Populations The Family Investigation of Nephropathy and Diabetes (FIND)

Jeffrey R. Schelling; Hanna E. Abboud; Susanne B. Nicholas; Madeleine V. Pahl; John R. Sedor; Sharon G. Adler; Nedal H. Arar; Donald W. Bowden; Robert C. Elston; Barry I. Freedman; Katrina A.B. Goddard; Xiuqing Guo; Robert L. Hanson; Eli Ipp; Sudha K. Iyengar; Gyungah Jun; W.H. Linda Kao; Balakuntalam S. Kasinath; Paul L. Kimmel; Michael J. Klag; William C. Knowler; Robert G. Nelson; Rulan S. Parekh; Shannon R E Quade; Stephen S. Rich; Mohammed F. Saad; Marina Scavini; Michael W. Smith; Kent D. Taylor; Cheryl A. Winkler

OBJECTIVE— Diabetic nephropathy, the most common cause of end-stage renal disease, aggregates in families and specific ethnic groups. Deconstructing diabetic nephropathy into intermediate, quantitative phenotypes may increase feasibility of detecting susceptibility loci by genetic screens. Glomerular filtration rate (GFR), which characterizes diabetic nephropathy, was employed as a quantitative trait in a preliminary whole-genome scan. RESEARCH DESIGN AND METHODS— Estimated GFR (eGFR) was calculated for 882 diabetic sibpairs (mean age 57 years) of African-American (25.6% of total), American Indian (8.6%), European-American (14.2%), and Mexican-American (51.6%) descent enrolled in the initial phase of the Family Investigation of Nephropathy and Diabetes (FIND). A whole-genome scan was performed using 404 microsatellite markers (average spacing 9 cM) and model-free linkage analysis. RESULTS— For all ethnicities combined, strong evidence for linkage was observed on chromosomes 1q43 (P = 3.6 × 10−3), 7q36.1 (P = 2.1 × 10−4), 8q13.3 (P = 4.6 × 10−4), and 18q23.3 (P = 2.7 × 10−3). Mexican-American families, who comprised the major ethnic subpopulation in FIND, contributed to linkage on chromosomes 1q43, 2p13.3, 7q36.1, 8q13.3, and 18q23.3, whereas African-American and American-Indian families displayed linkage peaks on chromosomes 11p15.1 and 15q22.3, respectively. CONCLUSIONS— We have demonstrated multiple chromosomal regions linked to eGFR in a multi-ethnic collection of families ascertained by a proband with diabetic nephropathy. Identification of genetic variants within these loci that are responsible for the linkage signals could lead to predictive tests or novel therapies for subsets of patients at risk for diabetic nephropathy.


Diabetes | 2007

Genome-Wide Scan for Estimated GFR in Multi-Ethnic Diabetic Populations: The Family Investigation of Nephropathy and Diabetes

Jeffrey R. Schelling; Hanna E. Abboud; Susanne B. Nicholas; Madeleine V. Pahl; John R. Sedor; Sharon G. Adler; Nedal H. Arar; Donald W. Bowden; Robert C. Elston; Barry I. Freedman; Katrina A.B. Goddard; Xiuqing Guo; Robert L. Hanson; Eli Ipp; Sudha K. Iyengar; Gyungah Jun; W.H. Linda Kao; Balakuntalam S. Kasinath; Paul L. Kimmel; Michael J. Klag; William C. Knowler; Robert G. Nelson; Rulan S. Parekh; Shannon R E Quade; Stephen S. Rich; Mohammed F. Saad; Marina Scavini; Michael W. Smith; Kent D. Taylor; Cheryl A. Winkler

OBJECTIVE— Diabetic nephropathy, the most common cause of end-stage renal disease, aggregates in families and specific ethnic groups. Deconstructing diabetic nephropathy into intermediate, quantitative phenotypes may increase feasibility of detecting susceptibility loci by genetic screens. Glomerular filtration rate (GFR), which characterizes diabetic nephropathy, was employed as a quantitative trait in a preliminary whole-genome scan. RESEARCH DESIGN AND METHODS— Estimated GFR (eGFR) was calculated for 882 diabetic sibpairs (mean age 57 years) of African-American (25.6% of total), American Indian (8.6%), European-American (14.2%), and Mexican-American (51.6%) descent enrolled in the initial phase of the Family Investigation of Nephropathy and Diabetes (FIND). A whole-genome scan was performed using 404 microsatellite markers (average spacing 9 cM) and model-free linkage analysis. RESULTS— For all ethnicities combined, strong evidence for linkage was observed on chromosomes 1q43 (P = 3.6 × 10−3), 7q36.1 (P = 2.1 × 10−4), 8q13.3 (P = 4.6 × 10−4), and 18q23.3 (P = 2.7 × 10−3). Mexican-American families, who comprised the major ethnic subpopulation in FIND, contributed to linkage on chromosomes 1q43, 2p13.3, 7q36.1, 8q13.3, and 18q23.3, whereas African-American and American-Indian families displayed linkage peaks on chromosomes 11p15.1 and 15q22.3, respectively. CONCLUSIONS— We have demonstrated multiple chromosomal regions linked to eGFR in a multi-ethnic collection of families ascertained by a proband with diabetic nephropathy. Identification of genetic variants within these loci that are responsible for the linkage signals could lead to predictive tests or novel therapies for subsets of patients at risk for diabetic nephropathy.


American Journal of Human Genetics | 2001

The amyloid precursor protein locus and very-late-onset Alzheimer disease.

Jane M. Olson; Katrina A.B. Goddard; Doreen M. Dudek

Although mutations in the amyloid-beta precursor protein (APP) gene are known to confer high risk of Alzheimer disease (AD) to a small percentage of families in which it has early onset, convincing evidence of a major role for the APP locus in late-onset AD has not been forthcoming. In this report, we have used a covariate-based affected-sib-pair linkage method to analyze the chromosome 21 clinical and genetic data obtained on affected sibships by the National Institute of Mental Health Alzheimer Disease Genetics Initiative. The baseline model (without covariates) gave a LOD score of 0.02, which increases to 1.43 when covariates representing the additive effects of E2 and E4 are added. Larger increases in LOD scores were found when age at last examination/death (LOD score 5.54; P=.000002) or age at onset plus disease duration (LOD score 5.63; P=.000006) were included in the linkage model. We conclude that the APP locus may predispose to AD in the very elderly.

Collaboration


Dive into the Katrina A.B. Goddard's collaboration.

Top Co-Authors

Avatar

Antonio R. Parrado

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Gerard Tromp

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane M. Olson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Qing Lu

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Robert C. Elston

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Sudha K. Iyengar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

John R. Sedor

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Amitabh Chak

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jeffrey R. Schelling

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge