Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrina G. Waymire is active.

Publication


Featured researches published by Katrina G. Waymire.


Molecular Cell | 2000

The Combined Functions of Proapoptotic Bcl-2 Family Members Bak and Bax Are Essential for Normal Development of Multiple Tissues

Tullia Lindsten; Andrea J. Ross; Ayala King; Wei Xing Zong; Jeffrey C. Rathmell; Helena Shiels; Eugen Ulrich; Katrina G. Waymire; Patryce L. Mahar; Kenneth A. Frauwirth; Yifeng Chen; Michael Wei; Vicki M. Eng; David M. Adelman; M. Celeste Simon; Averil Ma; Jeffrey A. Golden; Gerard I. Evan; Stanley J. Korsmeyer; Grant R. MacGregor; Craig B. Thompson

Proapoptotic Bcl-2 family members have been proposed to play a central role in regulating apoptosis. However, mice lacking bax display limited phenotypic abnormalities. As presented here, bak(-/-) mice were found to be developmentally normal and reproductively fit and failed to develop any age-related disorders. However, when Bak-deficient mice were mated to Bax-deficient mice to create mice lacking both genes, the majority of bax(-/-)bak(-/-) animals died perinatally with fewer than 10% surviving into adulthood. bax(-/-)bak(-/-) mice displayed multiple developmental defects, including persistence of interdigital webs, an imperforate vaginal canal, and accumulation of excess cells within both the central nervous and hematopoietic systems. Thus, Bax and Bak have overlapping roles in the regulation of apoptosis during mammalian development and tissue homeostasis.


Nature | 2004

The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore

Jason E. Kokoszka; Katrina G. Waymire; Shawn Levy; James E. Sligh; Jiyang Cai; Dean P. Jones; Grant R. MacGregor; Douglas C. Wallace

A sudden increase in permeability of the inner mitochondrial membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP). It is thought that the mtPTP is a protein complex formed by the voltage-dependent anion channel, members of the pro- and anti-apoptotic BAX-BCL2 protein family, cyclophilin D, and the adenine nucleotide (ADP/ATP) translocators (ANTs). The latter exchange mitochondrial ATP for cytosolic ADP and have been implicated in cell death. To investigate the role of the ANTs in the mtPTP, we genetically inactivated the two isoforms of ANT in mouse liver and analysed mtPTP activation in isolated mitochondria and the induction of cell death in hepatocytes. Mitochondria lacking ANT could still be induced to undergo permeability transition, resulting in release of cytochrome c. However, more Ca2+ than usual was required to activate the mtPTP, and the pore could no longer be regulated by ANT ligands. Moreover, hepatocytes without ANT remained competent to respond to various initiators of cell death. Therefore, ANTs are non-essential structural components of the mtPTP, although they do contribute to its regulation.


Nature Genetics | 1997

A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator

Brett H. Graham; Katrina G. Waymire; Barbara Cottrell; Ian A. Trounce; Grant R. MacGregor; Douglas C. Wallace

In an attempt to create an animal model of tissue-specif ic mitochondrial disease, we generated ‘knockout’ mice deficient in the heart/muscle isoform of the adenine nucleotide translocator (Ant1). Histological and ultrastructural examination of skeletal muscle from Ant1 null mutants revealed ragged-red muscle fibers and a dramatic proliferation of mitochondria, while examination of the heart revealed cardiac hypertrophy with mitochondrial proliferation. Mitochondria isolated from mutant skeletal muscle exhibited a severe defect in coupled respiration. Ant1 mutant adults also had a resting serum lactate level fourfold higher than that of controls, indicative of metabolic acidosis. Significantly, mutant adults manifested severe exercise intolerance. Therefore, Ant1 mutant mice have the biochemical, histological, metabolic and physiological characteristics of mitochondrial myopathy and cardiomyopathy.


Nature | 1999

Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole.

Larry J. Young; Roger Nilsen; Katrina G. Waymire; Grant R. MacGregor; Thomas R. Insel

Arginine vasopressin influences male reproductive and social behaviours in several vertebrate taxa through its actions at the V1a receptor in the brain. The neuroanatomical distribution of vasopressin V1a receptors varies greatly between species with different forms of social organization,. Here we show that centrally administered arginine vasopressin increases affiliative behaviour in the highly social, monogamous prairie vole, but not in the relatively asocial, promiscuous montane vole. Molecular analyses indicate that gene duplication and/or changes in promoter structure of the prairie vole receptor gene may contribute to the species differences in vasopressin-receptor expression. We further show that mice that are transgenic for the prairie vole receptor gene have a neuroanatomical pattern of receptor binding that is similar to that of the prairie vole, and exhibit increased affiliative behaviour after injection with arginine vasopressin. These data indicate that the pattern of V1a-receptor gene expression in the brain may be functionally associated with species-typical social behaviours in male vertebrates.


Science | 2008

A Mouse Model of Mitochondrial Disease Reveals Germline Selection Against Severe mtDNA Mutations

Weiwei Fan; Katrina G. Waymire; Navneet Narula; Peng Li; Christophe Rocher; Pinar Coskun; Mani A. Vannan; Jagat Narula; Grant R. MacGregor; Douglas C. Wallace

The majority of mitochondrial DNA (mtDNA) mutations that cause human disease are mild to moderately deleterious, yet many random mtDNA mutations would be expected to be severe. To determine the fate of the more severe mtDNA mutations, we introduced mtDNAs containing two mutations that affect oxidative phosphorylation into the female mouse germ line. The severe ND6 mutation was selectively eliminated during oogenesis within four generations, whereas the milder COI mutation was retained throughout multiple generations even though the offspring consistently developed mitochondrial myopathy and cardiomyopathy. Thus, severe mtDNA mutations appear to be selectively eliminated from the female germ line, thereby minimizing their impact on population fitness.


Journal of Bone and Mineral Research | 1999

Alkaline Phosphatase Knock-Out Mice Recapitulate the Metabolic and Skeletal Defects of Infantile Hypophosphatasia†

Kenton N. Fedde; Libby Blair; Julie Silverstein; Stephen P. Coburn; Lawrence M. Ryan; Robert S. Weinstein; Katrina G. Waymire; Sonoko Narisawa; José Luis Millán; Grant R. MacGregor; Michael P. Whyte

Hypophosphatasia is an inborn error of metabolism characterized by deficient activity of the tissue‐nonspecific isoenzyme of alkaline phosphatase (TNSALP) and skeletal disease due to impaired mineralization of cartilage and bone matrix. We investigated two independently generated TNSALP gene knock‐out mouse strains as potential models for hypophosphatasia. Homozygous mice (–/–) had < 1% of wild‐type plasma TNSALP activity; heterozygotes had the predicted mean of ∼50%. Phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′‐phosphate are putative natural substrates for TNSALP and all were increased endogenously in the knock‐out mice. Skeletal disease first appeared radiographically at ∼10 days of age and featured worsening rachitic changes, osteopenia, and fracture. Histologic studies revealed developmental arrest of chondrocyte differentiation in epiphyses and in growth plates with diminished or absent hypertrophic zones. Progressive osteoidosis from defective skeletal matrix mineralization was noted but not associated with features of secondary hyperparathyroidism. Plasma and urine calcium and phosphate levels were unremarkable. Our findings demonstrate that TNSALP knock‐out mice are a good model for the infantile form of hypophosphatasia and provide compelling evidence for an important role for TNSALP in postnatal development and mineralization of the murine skeleton.


Free Radical Biology and Medicine | 2000

MITOCHONDRIAL OXIDATIVE STRESS IN MICE LACKING THE GLUTATHIONE PEROXIDASE-1 GENE

Luke A. Esposito; Jason E. Kokoszka; Katrina G. Waymire; Barbara Cottrell; Grant R. MacGregor; Douglas C. Wallace

Oxidative stress resulting from mitochondrially derived reactive oxygen species (ROS) has been hypothesized to damage mitochondrial oxidative phosphorylation (OXPHOS) and to be a factor in aging and degenerative disease. If this hypothesis is correct, then genetically inactivating potential mitochondrial antioxidant enzymes such as glutathione peroxidase-1 (Gpx1; EC 1.11.1.9) should increase mitochondrial ROS production and decrease OXPHOS function. To determine the expression pattern of Gpx1, isoform-specific antibodies were generated and mutant mice were prepared in which the Gpx1 protein was substituted for by beta-galactosidase, driven by the Gpx1 promoter. These experiments revealed that Gpx1 is highly expressed in both the mitochondria and the cytosol of the liver and kidney, but poorly expressed in heart and muscle. To determine the physiological importance of Gpx1, mice lacking Gpx1 were generated by targeted mutagenesis in mouse ES cells. Homozygous mutant Gpx1(tm1Mgr) mice have 20% less body weight than normal animals and increased levels of lipid peroxides in the liver. Moreover, the liver mitochondria were found to release markedly increased hydrogen peroxide, a Gpx1 substrate, and have decreased mitochondrial respiratory control ratio and power output index. Hence, genetic inactivation of Gpx1 resulted in growth retardation, presumably due in part to reduced mitochondrial energy production as a product of increased oxidative stress.


Cell | 2012

Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in Altered Behavior and Cognition

Mark S. Sharpley; Christine Marciniak; Kristin Eckel-Mahan; Meagan J. McManus; Marco Crimi; Katrina G. Waymire; Chun Shi Lin; Satoru Masubuchi; Nicole Friend; Maya Koike; Dimitra Chalkia; Grant R. MacGregor; Paolo Sassone-Corsi; Douglas C. Wallace

Maternal inheritance of mtDNA is the rule in most animals, but the reasons for this pattern remain unclear. To investigate the consequence of overriding uniparental inheritance, we generated mice containing an admixture (heteroplasmy) of NZB and 129S6 mtDNAs in the presence of a congenic C57BL/6J nuclear background. Analysis of the segregation of the two mtDNAs across subsequent maternal generations revealed that proportion of NZB mtDNA was preferentially reduced. Ultimately, this segregation process produced NZB-129 heteroplasmic mice and their NZB or 129 mtDNA homoplasmic counterparts. Phenotypic comparison of these three mtDNA lines demonstrated that the NZB-129 heteroplasmic mice, but neither homoplasmic counterpart, had reduced activity, food intake, respiratory exchange ratio; accentuated stress response; and cognitive impairment. Therefore, admixture of two normal but different mouse mtDNAs can be genetically unstable and can produce adverse physiological effects, factors that may explain the advantage of uniparental inheritance of mtDNA.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mouse mtDNA mutant model of Leber hereditary optic neuropathy

Chun Shi Lin; Mark S. Sharpley; Weiwei Fan; Katrina G. Waymire; Alfredo A. Sadun; Valerio Carelli; Fred N. Ross-Cisneros; Peter Baciu; Eric C. Sung; Meagan J. McManus; Billy X. Pan; Daniel W. Gil; Grant R. MacGregor; Douglas C. Wallace

An animal model of Leber hereditary optic neuropathy (LHON) was produced by introducing the human optic atrophy mtDNA ND6 P25L mutation into the mouse. Mice with this mutation exhibited reduction in retinal function by elecroretinogram (ERG), age-related decline in central smaller caliber optic nerve fibers with sparing of larger peripheral fibers, neuronal accumulation of abnormal mitochondria, axonal swelling, and demyelination. Mitochondrial analysis revealed partial complex I and respiration defects and increased reactive oxygen species (ROS) production, whereas synaptosome analysis revealed decreased complex I activity and increased ROS but no diminution of ATP production. Thus, LHON pathophysiology may result from oxidative stress.


Biology of Reproduction | 2001

Spermatogenesis in Bclw-Deficient Mice

Lonnie D. Russell; Jeff Warren; Luciano Debeljuk; Laura L. Richardson; Patryce L. Mahar; Katrina G. Waymire; Scott P. Amy; Andrea J. Ross; Grant R. MacGregor

Abstract Bclw is a death-protecting member of the Bcl2 family of apoptosis-regulating proteins. Mice that are mutant for Bclw display progressive and nearly complete testicular degeneration. We performed a morphometric evaluation of testicular histopathology in Bclw-deficient male mice between 9 days postnatal (p9) through 1 yr of age. Germ cell loss began by p22, with only few germ cells remaining beyond 7 mo of age. A complete block to elongated spermatid development at step 13 occurred during the first wave of spermatogenesis, whereas other types of germ cells were lost sporadically. Depletion of Sertoli cells commenced between p20 and p23 and continued until 1 yr of age, when few, if any, Sertoli cells remained. Mitochondria appeared to be swollen and the cytoplasm dense by electron microscopy, but degenerating Bclw-deficient Sertoli cells failed to display classical features of apoptosis, such as chromatin condensation and nuclear fragmentation. Macrophages entered seminiferous tubules and formed foreign-body giant cells that engulfed and phagocytosed the degenerated Sertoli cells. Leydig cell hyperplasia was evident between 3 and 5 mo of age. However, beginning at 7 mo of age, Leydig cells underwent apoptosis, with dead cells being phagocytosed by macrophages. The aforementioned cell losses culminated in a testis-containing vasculature, intertubular phagocytic cells, and peritubular cell “ghosts.” An RNA in situ hybridization study indicates that Bclw is expressed in Sertoli cells in the adult mouse testis. Consequently, the diploid germ cell death may be an indirect effect of defective Sertoli cell function. Western analysis was used to confirm that Bclw is not expressed in spermatids; thus, loss of this cell type most likely results from defective Sertoli cell function. Because Bclw does not appear to be expressed in Leydig cells, loss of Leydig cells in Bclw-deficient mice may result from depletion of Sertoli cells. Bclw-deficient mice serve as a unique model to study homeostasis of cell populations in the testis.

Collaboration


Dive into the Katrina G. Waymire's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas C. Wallace

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry J. Young

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Lonnie D. Russell

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun Shi Lin

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge