Katsuhiko Ishihara
Kawasaki Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsuhiko Ishihara.
Nature Communications | 2013
Hong-Xiang Liu; Olga Lopatina; Chiharu Higashida; Hiroko Fujimoto; Shirin Akther; Alena Inzhutova; Mingkun Liang; Jing Zhong; Takahiro Tsuji; Toru Yoshihara; Kohei Sumi; Mizuho Ishiyama; Wen-Jie Ma; Mitsunori Ozaki; Satoshi Yagitani; Shigeru Yokoyama; Naofumi Mukaida; Takeshi Sakurai; Osamu Hori; Katsuji Yoshioka; Atsushi Hirao; Yukio Kato; Katsuhiko Ishihara; Ichiro Kato; Hiroshi Okamoto; Stanislav M. Cherepanov; Alla B. Salmina; Hirokazu Hirai; Masahide Asano; David A. Brown
Compared with the knowledge of maternal care, much less is known about the factors required for paternal parental care. Here we report that new sires of laboratory mice, though not spontaneously parental, can be induced to show maternal-like parental care (pup retrieval) using signals from dams separated from their pups. During this interaction, the maternal mates emit 38-kHz ultrasonic vocalizations to their male partners, which are equivalent to vocalizations that occur following pheromone stimulation. Without these signals or in the absence of maternal mates, the sires do not retrieve their pups within 5 min. These results show that, in mice, the maternal parent communicates to the paternal parent to encourage pup care. This new paradigm may be useful in the analysis of the parental brain during paternal care induced by interactive communication.
Frontiers in Behavioral Neuroscience | 2014
Olga Lopatina; Toru Yoshihara; Tomoko Nishimura; Jing Zhong; Shirin Akther; Azam Akm Fakhrul; Mingkun Liang; Chiharu Higashida; Kohei Sumi; Kazumi Furuhara; Yuki Inahata; Jian-Jung Huang; Keita Koizumi; Shigeru Yokoyama; Takahiro Tsuji; Yulia Petugina; Andrei Sumarokov; Alla B. Salmina; Koji Hashida; Yasuko Kitao; Osamu Hori; Masahide Asano; Yoji Kitamura; Takashi Kozaka; Kazuhiro Shiba; Fangfang Zhong; Min-Jue Xie; Makoto Sato; Katsuhiko Ishihara; Haruhiro Higashida
CD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositol-anchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinsons disease (PD), little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157−/−) male mice under less aging-related effects on behaviors. CD157−/− mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity in the amygdala was less evident in CD157−/− mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD.
Immunology Letters | 2012
Hideya Igarashi; Ayano Yahagi; Taro Saika; Jun Hashimoto; Tetsuya Tomita; Hideki Yoshikawa; Katsuhiko Ishihara
Circuit of chronic inflammation in the joints of rheumatoid arthritis (RA) starts from the production of inflammatory cytokines by fibroblast-like synoviocytes (FLS) stimulated by TNFα produced by inflammatory cells mainly composed of macrophages. In this context, TNFα/NF-κB pathway plays an essential role for the transcription of pro-inflammatory cytokines. Here we show that the kinetics of pro-inflammatory cytokine genes induced by TNFα in FLS from RA was synchronized with that of A20, ABIN1, and ABIN3 that have been thought as negative regulators for NF-κB activation. Furthermore, based on this finding, we could tentatively categorize the RA-FLS into two groups; TNFα low-responder and high-responder FLS. The high responders that have abundant mRNA levels of NF-κB inhibitory molecules were also accompanied with the marked induction of the pro-inflammatory cytokines by the stimulation with TNFα. The low responders RA-FLS did not show this property, nor did FLS from osteoarthritis. Phosphorylation dependent degradation of IκBα as well as NF-κB activation upon stimulation with TNFα was significantly enhanced in the high-responder FLS lines. Surprisingly, single transfection of each NF-κB inhibitor was enough to facilitate the transcription of pro-inflammatory cytokines, suggesting that there is an unknown pro-inflammatory function for A20 and ABIN family proteins in RA-FLS.
Clinical and Experimental Immunology | 2010
Hideya Igarashi; Jun Hashimoto; Tetsuya Tomita; Hideki Yoshikawa; Katsuhiko Ishihara
Main features of rheumatoid arthritis (RA), hyperplasia of fibroblast‐like synoviocytes (FLS) and joint destruction are caused by inflammatory cytokines produced in chronic autoimmune inflammation. Cell‐intrinsic acquisition of tumour‐like phenotypes of RA‐FLS could also be responsible for the aggressive proliferation and invasion, which are supported by the fact that in some cases RA‐FLS has mutations of a tumour suppressor gene TP53. However, the underlying molecular mechanism for TP53 mutations in RA‐FLS has not yet been clarified. Recently it has been reported that the non‐lymphoid cells in the inflammatory tissues express ectopically the activation‐induced cytidine deaminase (AID) gene that induces somatic hypermutations, not only at the immunoglobulin (Ig) gene variable regions in germinal centre B lymphocytes but also at coding regions in TP53. Real‐time polymerase chain reaction (PCR) analyses revealed more than half (five of nine) of the RA‐FLS lines we established showed the markedly increased expression of AID. AID transcription in RA‐FLS was augmented by tumour necrosis factor (TNF)‐α and even by physiological concentration of β‐oestradiol that could not induce AID transcription in osteoarthritis‐FLS. Furthermore, AID‐positive RA‐FLS presented a higher frequency of somatic mutations in TP53. Cytological and immunohistochemical analyses demonstrated clearly the ectopic expression of AID in the FLS at the RA synovium. These data suggested strongly a novel consequence of RA; the ectopic expression of AID in RA‐FLS causes the somatic mutations and dysfunction of TP53, leading to acquisition of tumour‐like properties by RA‐FLS.
BMC Neuroscience | 2017
Haruhiro Higashida; Mingkun Liang; Toru Yoshihara; Shirin Akther; Azam Akm Fakhrul; Cherepanov Stanislav; Tae-Sik Nam; Uh-Hyun Kim; Satoka Kasai; Tomoko Nishimura; Naila Al Mahmuda; Shigeru Yokoyama; Katsuhiko Ishihara; Maria Gerasimenko; Alla B. Salmina; Jing Zhong; Takahiro Tsuji; Chiharu Tsuji; Olga Lopatina
BackgroundRecent rodent and human studies provide evidence in support of the fact that CD157, well known as bone marrow stromal cell antigen-1 (BST-1) and a risk factor in Parkinson’s disease, also meaningfully acts in the brain as a neuroregulator and affects social behaviors. It has been shown that social behaviors are impaired in CD157 knockout mice without severe motor dysfunction and that CD157/BST1 gene single nucleotide polymorphisms are associated with autism spectrum disorder in humans. However, it is still necessary to determine how this molecule contributes to the brain’s physiological and pathophysiological functions.MethodsTo gain fresh insights about the relationship between the presence of CD157 in the brain and its enzymatic activity, and aberrant social behavior, CD157 knockout mice of various ages were tested.ResultsCD157 immunoreactivity colocalized with nestin-positive cells and elements in the ventricular zones in E17 embryos. Brain CD157 mRNA levels were high in neonates but low in adults. Weak but distinct immunoreactivity was detected in several areas in the adult brain, including the amygdala. CD157 has little or no base exchange activity, but some ADP-ribosyl cyclase activity, indicating that CD157 formed cyclic ADP-ribose but much less nicotinic acid adenine dinucleotide phosphate, with both mobilizing Ca2+ from intracellular Ca2+ pools. Social avoidance in CD157 knockout mice was rescued by a single intraperitoneal injection of oxytocin.ConclusionsCD157 may play a role in the embryonic and adult nervous systems. The functional features of CD157 can be explained in part through the production of cyclic ADP-ribose rather than nicotinic acid adenine dinucleotide phosphate. Further experiments are required to elucidate how the embryonic expression of CD157 in neural stem cells contributes to behaviors in adults or to psychiatric symptoms.
Brain Sciences | 2015
Akira Mizuno; Stanislav M. Cherepanov; Yusuke Kikuchi; Azam Akm Fakhrul; Shirin Akther; Kisaburo Deguchi; Toru Yoshihara; Katsuhiko Ishihara; Satoshi Shuto; Haruhiro Higashida
Oxytocin (OT) is a nonapeptide hormone that is secreted into the brain and blood circulation. OT has not only classical neurohormonal roles in uterine contraction and milk ejection during the reproductive phase in females, but has also been shown to have new pivotal neuromodulatory roles in social recognition and interaction in both genders. A single administration of OT through nasal spray increases mutual recognition and trust in healthy subjects and psychiatric patients, suggesting that OT is a potential therapeutic drug for autism spectrum disorders, schizophrenia, and some other psychiatric disorders. Although the mechanism is not well understood, it is likely that OT can be transported into the brain where it activates OT receptors to exert its function in the brain. However, the amount transported into the brain may be low. To ensure equivalent effects, an OT analog with long-lasting and effective blood-brain barrier penetration properties would be beneficial for use as a therapeutic drug. Here, we designed and synthesized a new oxytocin analog, lipo-oxytocin-1 (LOT-1), in which two palmitoyl groups are conjugated at the amino group of the cysteine9 residue and the phenolic hydroxyl group of the tyrosine8 residue of the OT molecule. To determine whether LOT-1 actually has an effect on the central nervous system, we examined its effects in a CD157 knockout model mouse of the non-motor psychiatric symptoms of Parkinson’s disease. Similar to OT, this analog rescued anxiety-like behavior and social avoidance in the open field test with the social target in a central arena 30 min after intraperitoneal injection in CD157 knockout mice. When examined 24 h after injection, the mice treated with LOT-1 displayed more recovery than those given OT. The results suggest that LOT-1 has a functional advantage in recovery of social behavioral impairment, such as those caused by neurodegenerative diseases, autism spectrum disorders, and schizophrenia.
BMC Musculoskeletal Disorders | 2009
Fumio Tsuji; Miwa Yoshimi; Osamu Katsuta; Miwa Takai; Katsuhiko Ishihara; Hiroyuki Aono
BackgroundKnock-in mice (gp130F759) with a Y759F point mutation in gp130, a signal transducing receptor subunit shared by members of the IL-6 cytokine family, show sustained activation of STAT3, enhanced acute-phase or immune responses, and autoimmune arthritis. We conducted a detailed analysis of collagen-induced arthritis (CIA) in gp130F759 with a DBA/1J background (D/J.gp130F759).MethodsWe backcrossed gp130F759 to C57BL/6 and DBA/1J, and compared the pathologic changes, including occurrence of arthritis, in the two distinct genetic backgrounds. We analyzed CIA in D/J.gp130F759 and investigated the effects of methotrexate (MTX) on CIA.ResultsC57BL/6 background gp130F759 mice, but not D/J.gp130F759, spontaneously developed polyarthritis and glomerulonephritis. On the other hand, keratitis of the eyes only developed in D/J.gp130F759, indicating the influence of genetic background on disease development in gp130F759 mice. Resistance of the DBA/1J background against spontaneous arthritis urged us to examine CIA in D/J.gp130F759. CIA in D/J.gp130F759 was more severe, with greater bone destruction, than the control mice. After collagen immunization, splenomegaly and serum levels of rheumatoid factor and anti-DNA antibody were augmented in D/J.gp130F759. Bio-Plex analysis of serum cytokines revealed increased IL-12p40 and PDGF-BB before immunization, and increased levels of IFN-γ, IL-17, TNF-α, IL-9, and MIP-1β 8 days after the booster dose. IL-6 and PDGF-BB in D/J.gp130F759 showed distinct kinetics from the other cytokines; higher levels were observed after arthritis development. MTX partially attenuated the development of arthritis and inhibited bone destruction in D/J.gp130F759, with reduction of anti-type II collagen antibody levels, suggesting that MTX mainly affects antigen-specific immune responses in CIA.ConclusionThe Tyr-759 point mutation of the IL-6 family cytokine receptor subunit, gp130, caused autoimmune disease, and this was also influenced by the genetic background. CIA in D/J.gp130F759 is useful for evaluating drugs in a relatively short period because sustained activation of STAT3 may enhance the disease symptoms.
Frontiers in Behavioral Neuroscience | 2017
Satoka Kasai; Toru Yoshihara; Olga Lopatina; Katsuhiko Ishihara; Haruhiro Higashida
Parkinson’s disease (PD), a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B) inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO) mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg) dose-dependently reduced immobility time in the forced swimming test (FST) in CD157 KO mice, but not C57BL/6N wild-type (WT) mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA) D2/D3 receptor agonist) or rasagiline (another MAO-B inhibitor), and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA), mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT) content, cortical norepinephrine (NE) content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT), repeated administration of mirtazapine had anxiolytic effects, and selegiline nonsignificantly ameliorated anxiety-like behaviors in CD157 KO mice. In the social interaction and preference tests, repeated mirtazapine ameliorated the high anxiety and low sociability of CD157 KO mice, whereas selegiline did not. These results indicate that selegiline has antidepressant and mild anxiolytic effects in CD157 KO mice, and suggest that it is an effective antiparkinsonian drug for depressive and anxiety symptoms in PD patients with a CD157 single nucleotide polymorphism (SNP).
Frontiers in Neuroscience | 2017
Olga L. Lopatina; Kazumi Furuhara; Katsuhiko Ishihara; Alla B. Salmina; Haruhiro Higashida
Communication consists of social interaction, recognition, and information transmission. Communication ability is the most affected component in children with autism spectrum disorder (ASD). Recently, we reported that the CD157/BST1 gene is associated with ASD, and that CD157 knockout (Cd157−/−) mice display severe impairments in social behavior that are improved by oxytocin (OXT) treatment. Here, we sought to determine whether Cd157−/− mice can be used as a suitable model for communication deficits by measuring ultrasonic vocalizations (USVs), especially in the early developmental stage. Call number produced in pups due to isolation from dams was higher at postnatal day (PND) 3 in knockout pups than wild-type mice, but was lower at PNDs 7 and 10. Pups of both genotypes had similarly limited voice repertoires at PND 3. Later on, at PNDs 7 and 10, while wild-type pups emitted USVs consisting of six different syllable types, knockout pups vocalized with only two types. This developmental impairment in USV emission was rescued within 30 min by intraperitoneal OXT treatment, but quickly returned to control levels after 120 min, showing a transient effect of OXT. USV impairment was partially observed in Cd157+/− heterozygous mice, but not in Cd157−/− adult male mice examined while under courtship. These results demonstrate that CD157 gene deletion results in social communication insufficiencies, and suggests that CD157 is likely involved in acoustic communication. This unique OXT-sensitive developmental delay in Cd157−/− pups may be a useful model of communicative interaction impairment in ASD.
Archive | 2012
Katsuhiko Ishihara; Hideya Igarashi
The immune system is a highly organized defense system, which recognizes invading microorganisms and aims to exclude them. In order to do this effectively and safely, the immune system must distinguish between selfand non-self-antigens, and be tolerant of self-antigens. Autoimmune diseases develop through the breakdown of self-tolerance, as a result of immune deregulation. This is caused by the combined influence of genetic and environmental factors, including infectious microorganisms. Rheumatoid arthritis (RA) is a systemic autoimmune disease, characterized by synovial hyperplasia leading to the destruction of bones and joints. This severely impairs the life of patients. RA is a relatively common autoimmune disease, occurring in approximately 1% of the population. However, its etiology and pathophysiology are not completely understood. The incidence of RA is correlated with certain human leukocyte antigen (HLA)-DR haplotypes, and the production of autoantibodies such as rheumatoid factor and anticitrullinated protein autoantibody. Thus, the involvement of the deregulated immune system is strongly implicated. Various molecules, including type II collagen, gp39, citrullinated peptides, and glucose-6phosphoisomerase, have been reported as potential pathogenic autoantigens. However, their involvement explains only a proportion of RA cases. Autoantigens are abundant in the body and, theoretically, the immune response to them continues indefinitely. Thus, systemic autoimmune diseases exhibit the characteristics of chronic inflammation. In the pathological condition of RA, the joints are infiltrated with T cells, B cells, macrophages, and plasma cells, all of which are characteristic chronic inflammation cells driven by the immune system. Recently, Th17, a novel helper T-cell subset producing interleukin (IL)-17, has been recognized as a pivotal player in the local inflammation driven by acquired immunity. In addition to immune-competent cells, there is accumulating evidence for abnormalities in non-hematopoietic cells, especially fibroblast-like synoviocytes (FLSs) (Bartok & Firestein, 2010; Firestein, 2009; Mor et al., 2005; Pap & Gay, 2009). The cartilage and bone are destroyed by the invasion of pannus, which is formed from proliferating FLSs and multi-nucleated osteoclasts. Osteoclasts are specialized to resolve bone, and play a major role in bone destruction in RA. However, there is strong evidence that FLSs themselves are aggressive enough to destroy bone. When cultured FLSs derived from RA or osteoarthritis (OA) were co-implanted with human cartilage under the renal