Katsuhisa Sakaguchi
Waseda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsuhisa Sakaguchi.
Nature Protocols | 2012
Yuji Haraguchi; Tatsuya Shimizu; Tadashi Sasagawa; Hidekazu Sekine; Katsuhisa Sakaguchi; Tetsutaro Kikuchi; Waki Sekine; Sachiko Sekiya; Masayuki Yamato; Mitsuo Umezu; Teruo Okano
The fabrication of 3D tissues retaining the original functions of tissues/organs in vitro is crucial for optimal tissue engineering and regenerative medicine. The fabrication of 3D tissues also contributes to the establishment of in vitro tissue/organ models for drug screening. Our laboratory has developed a fabrication system for functional 3D tissues by stacking cell sheets of confluent cultured cells detached from a temperature-responsive culture dish. Here we describe the protocols for the fabrication of 3D tissues by cell sheet engineering. Three-dimensional cardiac tissues fabricated by stacking cardiac cell sheets pulsate spontaneously, synchronously and macroscopically. Via this protocol, it is also possible to fabricate other tissues, such as 3D tissue including capillary-like prevascular networks, from endothelial cells sandwiched between layered cell sheets. Cell sheet stacking technology promises to provide in vitro tissue/organ models and more effective therapies for curing tissue/organ failures.
Nature Communications | 2013
Hidekazu Sekine; Tatsuya Shimizu; Katsuhisa Sakaguchi; Izumi Dobashi; Masanori Wada; Masayuki Yamato; Eiji Kobayashi; Mitsuo Umezu; Teruo Okano
Artificially engineered tissues may have many therapeutic applications but complex tissues are hard to create in vitro. Here, Okano and colleagues report the production of functional cardiac tissue sheets with perfusable blood vessels, which increase the thickness and survival of transplanted tissue.
Scientific Reports | 2013
Katsuhisa Sakaguchi; Tatsuya Shimizu; Shigeto Horaguchi; Hidekazu Sekine; Masayuki Yamato; Mitsuo Umezu; Teruo Okano
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models.
Journal of Controlled Release | 2015
Katsuhisa Sakaguchi; Tatsuya Shimizu; Teruo Okano
Construction of three-dimensional (3D) tissues with pre-isolated cells is a promising achievement for novel medicine and drug-discovery research. Our laboratory constructs 3D tissues with an innovative and unique method for layering multiple cell sheets. Cell sheets maintain a high-efficiently regenerating function, because of the higher cell density and higher transplantation efficiency, compared to other cell-delivery methods. Cell sheets have already been applied in clinical applications for regenerative medicine in treating patients with various diseases. Therefore, in our search to develop a more efficient treatment with cell sheets, we are constructing 3D tissues by layering cell sheets. Native animal tissues and organs have an abundance of capillaries to supply oxygen and nutrients, and to remove waste molecules. In our investigation of vascularized cardiac cell sheets, we have found that endothelial cells within cell sheets spontaneously form blood vessel networks as in vivo capillaries. To construct even thicker 3D tissues by layering multiple cell sheets, it is critical to have a medium or blood flow within the vascular networks of the cell sheets. Therefore, to perfuse medium or blood in the cell sheet vascular network to maintain the viability of all cells, we developed two types of vascular beds; (1) a femoral muscle-based vascular bed, and (2) a synthetic collagen gel-based vascular bed. Both vascular beds successfully provide the critical flow of culture medium, which allows 12-layer cell sheets to survive. Such bioreactor systems, when combined with cell sheet engineering techniques, have produced functional vascularized 3D tissues. Here we explain and discuss the various processes to obtain vascular networks by properly connecting cell sheets and the engineering of 3D tissues.
PLOS ONE | 2015
Dehua Chang; Tatsuya Shimizu; Yuji Haraguchi; Shuai Gao; Katsuhisa Sakaguchi; Mitsuo Umezu; Masayuki Yamato; Zhongmin Liu; Teruo Okano
Multilayered cell sheets have been produced from bone marrow-derived mesenchymal stem cells (MSCs) for investigating their adhesion properties onto native porcine heart tissue. Once MSCs reached confluence after a 7-day culture on a temperature-responsive culture dish, a MSCs monolayer spontaneously detached itself from the dish, when the culture temperature was reduced from 37 to 20°C. The basal extracellular matrix (ECM) proteins of the single cell sheet are preserved, because this technique requires no proteolytic enzymes for harvesting cell sheet, which become a basic building block for assembling a multilayer cell sheet. The thickness of multilayered cell sheets made from three MSC sheets was found to be approximately 60 μm. For investigating the adhesion properties of the basal and apical sides, the multilayered cell sheets were transplanted onto the surface of the heart’s left ventricle. Multilayered cell sheets were histological investigated at 15, 30, 45 and 60 minutes after transplantation by hematoxylin eosin (HE) and azan dyes to determine required time for the adhesion of the multilayered sheets following cell-sheet transplantation. The results showed that only the basal side of multilayered cell sheets significantly enhanced the sheets adhesion onto the surface of heart 30 minutes after transplantation. This study concluded that (1) cell sheets had to be transplanted with its basal side onto the surface of heart tissue and (2) at least 30 minutes were necessary for obtaining the histological adhesion of the sheets to the heart tissue. This study provided clinical evidence and parameters for the successful application of MSC sheets to the myocardium and allowed cell sheet technology to be adapted clinical cell-therapy for myocardial diseases.
Biofabrication | 2015
Hiroaki Takehara; Katsuhisa Sakaguchi; Masatoshi Kuroda; Megumi Muraoka; Kazuyoshi Itoga; Teruo Okano; Tatsuya Shimizu
Cellular self-assembly based on cell-to-cell communication is a well-known tissue organizing process in living bodies. Hence, integrating cellular self-assembly processes into tissue engineering is a promising approach to fabricate well-organized functional tissues. In this research, we investigated the capability of endothelial cells (ECs) to control shape and position of vascular formation using arbitral-assembling techniques in three-dimensional engineered tissues. To quantify the degree of migration of ECs in endothelial network formation, image correlation analysis was conducted. Positive correlation between the original positions of arbitrarily assembled ECs and the positions of formed endothelial networks indicated the potential for controlling shape and position of vascular formations in engineered tissues. To demonstrate the feasibility of controlling vascular formations, engineered tissues with vascular networks in triangle and circle patterns were made. The technique reported here employs cellular self-assembly for tissue engineering and is expected to provide fundamental beneficial methods to supply various functional tissues for drug screening and regenerative medicine.
Scientific Reports | 2017
Yuji Haraguchi; Yuki Kagawa; Katsuhisa Sakaguchi; Katsuhisa Matsuura; Tatsuya Shimizu; Teruo Okano
In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae.
Theranostics | 2017
A. Villasante; Katsuhisa Sakaguchi; J. Kim; N. K. Cheung; M. Nakayama; H. Parsa; Teruo Okano; Tatsuya Shimizu; G. Vunjak-Novakovic
Neuroblastoma is a vascularized pediatric tumor derived from neural crest stem cells that displays vasculogenic mimicry and can express a number of stemness markers, such as SOX2 and NANOG. Tumor relapse is the major cause of succumbing to this disease, and properties attributed to cancer stem-like cells (CSLC), such as drug-resistance and cell plasticity, seem to be the key mechanisms. However, the lack of controllable models that recapitulate the features of human neuroblastoma limits our understanding of the process and impedes the development of new therapies. In response to these limitations, we engineered a perfusable, vascularized in vitro model of three-dimensional human neuroblastoma to study the effects of retinoid therapy on tumor vasculature and drug-resistance. METHODS: The in vitro model of neuroblastoma was generated using cell-sheet engineering and cultured in a perfusion bioreactor. Firstly, we stacked three cell sheets containing SKNBE(2) neuroblastoma cells and HUVEC. Then, a vascular bed made of fibrin, collagen I and HUVEC cells was placed onto a collagen-gel base with 8 microchannels. After gelling, the stacked cell sheets were placed on the vascular bed and cultured in the perfusion bioreactor (perfusion rate: 0.5 mL/min) for 4 days. Neuroblastoma models were treated with 10μM isotretionin in single daily doses for 5 days. RESULTS: The bioengineered model recapitulated vasculogenic mimicry (vessel-like structure formation and tumor-derived endothelial cells-TECs), and contained CSLC expressing SOX2 and NANOG. Treatment with Isotretinoin destabilized vascular networks but failed to target vasculogenic mimicry and augmented populations of CSLCs expressing high levels of SOX2. Our results suggest that CSLCs can transdifferentiate into drug resistant CD31+-TECs, and reveal the presence of an intermediate state STEC (stem tumor-derived endothelial cell) expressing both SOX2 and CD31. CONCLUSION: Our results reveal some roles of SOX2 in drug resistance and tumor relapse, and suggest that SOX2 could be a therapeutic target in neuroblastoma.
Journal of Biomedical Materials Research Part B | 2017
Akiyuki Hasegawa; Yuji Haraguchi; Hirotoshi Oikaze; Yasuhiro Kabetani; Katsuhisa Sakaguchi; Tatsuya Shimizu
Optical coherence tomography (OCT) is a valuable tool in the cross-sectional observation/analysis of three-dimensional (3-D) biological tissues, and that histological observation is important clinically. However, the resolution of the technology is approximately 10-20 μm. In this study, optical coherence microscopy (OCM), a tomographic system combining OCT technology with a microscopic technique, was constructed for observing cells individually with a resolution at the submicrometer level. Cells and 3-D tissues fabricated by cell sheet technology were observed by OCM. Importantly, the cell nuclei and cytoplasm could be clearly distinguished, and the time-dependent dynamics of cell-sheet tissues could be observed in detail. Additionally, the 3-D migration of cells in the bioengineered tissue was also detected using OCM and metal-labeled cells. Bovine aortic endothelial cells, but not NIH3T3 murine embryonic skin fibroblasts, actively migrated within the 3-D tissues. This study showed that the OCM system would be a valuable tool in the fields of cell biology, tissue engineering, and regenerative medicine.
Fluid Mechanics: Open Access | 2016
Katsuhisa Sakaguchi; Nur Khatijah Mohd Zin; Yuji Haraguchi; Azuma Takahashi; Sara Suzuki; Takanobu Yagi; Tatsuya Shimizu; Mitsuo Umezu
The suspension culture system is an increasingly popular method of culturing cells not only because of its up scaling ability, but also the non-enzymatic procurement of cells that is crucial for biomedical research, especially in the fields of pharmacology and regenerative medicine. Hypothetically, by controlling and reducing the shear stress applied to cells in a culture system, the higher viability and proliferation rates. In this study, we analyzed HEK 293 cells cultured with a commercially available spinner flask and our newly developed spinner flask which utilizes the theory of Couette flow for controlling shear stress. Fluid analysis and metabolic analysis of the cultured cells were measured at three different rotational speeds, 40, 50 and 60 rpm. It was apparent that 50 rpm was by far the best speed to proliferate the cells. A further viability test was also done in order to validate our hypothesis. Furthermore, by using the metabolic analysis results, it was observed that in the controlled stress system, the consumption of glucose doubled and lactate production was significantly higher compared to cells that were maintained in the conventional suspension method. Thus, Couette flow based suspension culture system will be a major contributor to the future biomedical and pharmacological field.