Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katsunori Kimoto is active.

Publication


Featured researches published by Katsunori Kimoto.


Nature | 2012

A Cenozoic record of the equatorial Pacific carbonate compensation depth

Heiko Pälike; Mitchell Lyle; Hiroshi Nishi; Isabella Raffi; Andy Ridgwell; Kusali Gamage; Adam Klaus; Gary D Acton; Louise Anderson; Jan Backman; Jack G. Baldauf; Catherine Beltran; Steven M. Bohaty; Paul R. Bown; W.H. Busch; James E T Channell; Cecily O. J. Chun; Margaret Lois Delaney; Pawan Dewangan; Tom Dunkley Jones; Kirsty M. Edgar; Helen F Evans; Peter Fitch; Gavin L. Foster; Nikolaus Gussone; Hitoshi Hasegawa; Ed C. Hathorne; Hiroki Hayashi; Jens O. Herrle; Ann Holbourn

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0–3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.


Geochemistry Geophysics Geosystems | 2008

Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry

Mervyn Greaves; Nicolas Caillon; H. Rebaubier; G. Bartoli; Steven M. Bohaty; Isabel Cacho; Leon J. Clarke; C. Daunt; Mary Lally Delaney; Peter B. deMenocal; A. Dutton; Stephen M. Eggins; Henry Elderfield; D. Garbe-Schoenberg; Ethan A. Goddard; D. Green; Jeroen Groeneveld; David W. Hastings; Ed C. Hathorne; Katsunori Kimoto; Gary P. Klinkhammer; Laurent Labeyrie; David W. Lea; Thomas M. Marchitto; M. A. Martínez-Botí; Peter Graham Mortyn; Y. Ni; D. Nuernberg; Georges Paradis; L. D. Pena

An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.


Nature Communications | 2014

Enhanced role of eddies in the Arctic marine biological pump

Eiji Watanabe; Jonaotaro Onodera; Naomi Harada; Makio C. Honda; Katsunori Kimoto; Takashi Kikuchi; Shigeto Nishino; Kohei Matsuno; Atsushi Yamaguchi; Akio Ishida; Michio J. Kishi

The future conditions of Arctic sea ice and marine ecosystems are of interest not only to climate scientists, but also to economic and governmental bodies. However, the lack of widespread, year-long biogeochemical observations remains an obstacle to understanding the complicated variability of the Arctic marine biological pump. Here we show an early winter maximum of sinking biogenic flux in the western Arctic Ocean and illustrate the importance of shelf-break eddies to biological pumping from wide shelves to adjacent deep basins using a combination of year-long mooring observations and three-dimensional numerical modelling. The sinking flux trapped in the present study included considerable fresh organic material with soft tissues and was an order of magnitude larger than previous estimates. We predict that further reductions in sea ice will promote the entry of Pacific-origin biological species into the Arctic basin and accelerate biogeochemical cycles connecting the Arctic and subarctic oceans.


Geochemistry Geophysics Geosystems | 2008

Radiocarbon‐based carbon source quantification of anomalous isotopic foraminifera in last glacial sediments in the western North Pacific

Masao Uchida; Ken'ichi Ohkushi; Katsunori Kimoto; Fumio Inagaki; Toyoho Ishimura; Urumu Tsunogai; Taqumi TuZino; Yasuyuki Shibata

A previous study interpreted extremely 13C-depleted excursions of planktonic and benthic foraminifera in last glacial sediments (17,500 to 25,400 cal years B.P.) of the core retrieved from off Shimokita Peninsula and off Hokkaido, Japan, as evidence for periodic releases of methane, arising from the dissociation of methane hydrate. To better understand the formation process of the 13C-depleted excursions, we conducted high-resolution natural radiocarbon measurements and biogeochemical analyses. We found highly depleted 13C excursions ranging from −10.2‰ to −1.6‰ and −6.8‰ to −1.6‰ in planktonic and benthic foraminifera, respectively. Most of the foraminiferal tests in these horizons were brown, most likely as a result of postdepositional alteration, reflecting the formation of authigenic carbonate on the surface of tests. These alterations were also supported by high levels of Mg-calcite and the acid-leaching test for anomalous foraminifera. To evaluate the carbon sources in the altered foraminifera tests, we quantified the relative contributions of 14C-free methane-derived carbon sources to the formation of authigenic carbonates in foraminifera with depleted 13C excursions using a coupled mass balance isotopic model (14C/C and 13C/12C). The radiocarbon ages of both planktonic and benthic 13C-depleted foraminifera were approximately 600 to 2000 years older than those of normal tests from nearby horizons. The relative contributions of authigenic carbonates derived from the methane oxidizing process reached to ∼22 wt% for planktonic foraminifera and ∼15 wt% for benthic foraminifera. The δ13C values of methane calculated from the mass balance model were between −29‰ and −68‰ for planktonic foraminifera and between −40‰ and −108‰ for benthic foraminifera, consistent with δ13C values reported for thermogenic and abiogenic methane in global methane hydrate reservoirs. These data consistently suggest that methane-related drastic environmental change occurred in the horizons that included δ13C anomalies. This study provides important information for interpreting geological records of the methane hydrate instability associated with climate.


Marine Micropaleontology | 2003

Carbonate dissolution and planktonic foraminiferal assemblages observed in three piston cores collected above the lysocline in the western equatorial Pacific

Katsunori Kimoto; Hidetomo Takaoka; Motoyoshi Oda; Minoru Ikehara; Hiromi Matsuoka; Makoto Okada; Tadamichi Oba; Asahiko Taira

Abstract Planktonic foraminiferal assemblages were analyzed in three piston cores recovered from depths above the recent sedimentary lysocline (3.5 km) in the western Pacific Ocean for the purposes of (1) evaluating the effects of carbonate dissolution on fossil assemblages and (2) the impact of dissolution on paleoceanographic reconstructions for the past 300 kyr. We used the perfect test ratio (PTR) of Globorotalia menardii as an indicator of carbonate dissolution. Down-core variations of the PTR indicate that significant dissolution occurred during reglaciation steps represented by isotope stages 7–6, 5–4, and 3–2. The results of principal component analysis (PCA) based on the relative abundances of dominant species of planktonic foraminifera indicate that down-core changes in factor 1 loadings correlate with variations in PTR and with variations in the percentage of coarse fraction (>63 μm) present in the sediments. These correlations indicate that foraminiferal assemblages were apparently altered by dissolution events despite the fact that they were deposited at water depths shallower than the modern lysocline. We also estimated variations in paleo-sea surface temperature (paleo-SST) using the transfer function FP-12E. A negative correlation was found in communality as calculated from PCA and factor 1 loadings; this trend is distinct for the case of communality lower than 0.9. Thus, we conclude that estimated paleo-SST values based upon analysis of planktonic foraminifera are biased by carbonate dissolution.


Paleoceanography | 2015

Observation of the dissolution process of Globigerina bulloides tests (planktic foraminifera) by X‐ray microcomputed tomography

Shinya Iwasaki; Katsunori Kimoto; Osamu Sasaki; Harumasa Kano; Makio C. Honda; Yusuke Okazaki

We performed a 9 day dissolution experiment with tests of the planktic foraminifer Globigerina bulloides at pH 6.7 ± 0.1 in water undersaturated with respect to calcite. The initial stage of the dissolution process, which is not recognizable from the surface structure of the tests, was quantitatively evaluated by X-ray microcomputed tomography (XMCT). XMCT revealed three distinct test structures: early-developed calcite formed during the juvenile stage of G. bulloides, an inner calcite layer, and an outer calcite layer. The test ultrastructure was observed by scanning electron microscopy, and CT number evaluated the density distribution in the test. The early-developed calcite and inner calcite layer had low CT numbers (500–1300; low density, porous) and were sensitive to dissolution, whereas the outer calcite layer had high CT numbers (<1300; high density) and resisted dissolution. Both the modes and the frequencies of the CT numbers decreased with progress of dissolution. Changes in the CT number histogram with progress of dissolution were quantified in terms of the percentage of calcite volume accounted for by low-density calcite (% Low-CT-number calcite). A clear linear relationship (R2 = 0.87) between % Low-CT-number calcite and % Test weight loss was found. This relationship indicates that the amount of test dissolution can be estimated from the distribution of CT numbers. We propose that XMCT measurements will be useful for quantitatively estimating the amount of carbonate loss from foraminiferal tests by dissolution.


Paleontological Research | 2010

Polycystine Radiolarians in the Tsushima Strait in Autumn of 2006

Takuya Itaki; Katsunori Kimoto; Shiro Hasegawa

Abstract. A total of 92 species or taxa of polycystine radiolarians were identified in depth-stratified plankton samples collected from the Tsushima Strait between Japan and Korea in autumn 2006. This assemblage can be divided into three groups: shallow eastern channel, shallow western channel, and bottom western channel. The distribution patterns are most likely related to different water masses. The western channel is influenced mainly by the Taiwan Current and coastal waters, which are characterized by low salinity and high nutrients, whereas water in the eastern channel is mainly from the Kuroshio Current. Cycladophora davisiana, which lives deeper than 500 m in the Japan Sea, was abundant in the western channel at 100–140 m. This suggests that the deeper microzooplankton in the Tsushima Strait are associated with colder and less saline water originating from the greater depths of the Japan Sea.


Paleoceanography | 2016

Geochemical imprints of genotypic variants of Globigerina bulloides in the Arabian Sea

Aleksey Sadekov; Kate F. Darling; Toyoho Ishimura; Christopher M. Wade; Katsunori Kimoto; Arun Deo Singh; Pallavi Anand; Dick Kroon; Simon Jung; Gerald Ganssen; Raja S. Ganeshram; Urumu Tsunogai; Henry Elderfield

Planktonic foraminifera record oceanic conditions in their shell geochemistry. Many palaeoenvironmental studies have used fossil planktonic foraminifera to constrain past seawater properties by defining species based on their shell morphology. Recent genetic studies, however, have identified ecologically distinct genotypes within traditionally recognized morphospecies, signaling potential repercussions for palaeoclimate reconstructions. Here we demonstrate how the presence of Globigerina bulloides cryptic genotypes in the Arabian Sea may influence geochemical signals of living and fossil assemblages of these morphospecies. We have identified two distinct genotypes of G. bulloides with either cool water (type-II) or warm water (type-I) temperature preferences in the Western Arabian Sea. We accompany these genetic studies with analyses of Mg/Ca and stable oxygen isotope (δ18O) compositions of individual G. bulloides shells. Both Mg/Ca and δ18O values display bimodal distribution patterns. The distribution of Mg/Ca values cannot be simply explained by seawater parameters, and we attribute it to genotype-specific biological controls on the shell geochemistry. The wide range of δ18O values in the fossil assemblage also suggests that similar controls likely influence this proxy in addition to environmental parameters. However, the magnitude of this effect on the δ18O signals is not clear from our data set, and further work is needed to clarify this. We also discuss current evidence of potential genotype-specific geochemical signals in published data on G. bulloides geochemistry and other planktonic foraminiferal species. We conclude that significant caution should be taken when utilizing G. bulloides geochemistry for paleoclimate reconstruction in the regions with upwelling activity or oceanographic fronts.


Environmental Microbiology Reports | 2011

Molecular identification of reproductive cells released from Cypassis irregularis Nigrini (Radiolaria)

Katsunori Kimoto; Tomoko Yuasa; Osamu Takahashi

The mechanisms of the extensive distribution of radiolarian-affiliated sequences from clone libraries of marine picoeukaryotes from deeper water remain poorly understood. Here, we describe an event that could explain this phenomenon. A polycystine radiolarian species, Cypassis irregularis Nigrini, released a large number of pico-size cells under culture conditions. The diameters of the cells averaged ∼3 µm and the 18S rDNA sequences fell within those of typical radiolarian families. This finding suggests that the radiolarian sequences found in the picoeukaryote size fraction from deep water are from swarmers or gametes released for reproduction. Thus, the deep ocean is expected to aid in the widespread dispersal of the genetic material of eukaryotes.


Journal of Oceanography | 2017

Comparison of carbon cycle between the western Pacific subarctic and subtropical time-series stations: highlights of the K2S1 project

Makio C. Honda; Masahide Wakita; Kazuhiko Matsumoto; Tetsuichi Fujiki; Eko Siswanto; Kosei Sasaoka; Hajime Kawakami; Yoshihisa Mino; Chiho Sukigara; Minoru Kitamura; Yoshikazu Sasai; Sherwood Lan Smith; Taketo Hashioka; Chisato Yoshikawa; Katsunori Kimoto; Shuichi Watanabe; Toru Kobari; Toshi Nagata; Koji Hamasaki; Ryo Kaneko; Mario Uchimiya; Hideki Fukuda; Osamu Abe; Toshiro Saino

A comparative study of ecosystems and biogeochemistry at time-series stations in the subarctic gyre (K2) and subtropical region (S1) of the western North Pacific Ocean (K2S1 project) was conducted between 2010 and 2013 to collect essential data about the ecosystem and biological pump in each area and to provide a baseline of information for predicting changes in biologically mediated material cycles in the future. From seasonal chemical and biological observations, general oceanographic settings were verified and annual carbon budgets at both stations were determined. Annual mean of phytoplankton biomass and primary productivity at the oligotrophic station S1 were comparable to that at the eutrophic station K2. Based on chemical/physical observations and numerical simulations, the likely “missing nutrient source” was suggested to include regeneration, meso-scale eddy driven upwelling, meteorological events, and eolian inputs in addition to winter vertical mixing. Time-series observation of carbonate chemistry revealed that ocean acidification (OA) was ongoing at both stations, and that the rate of OA was faster at S1 than at K2 although OA at K2 is more critical for calcifying organisms.

Collaboration


Dive into the Katsunori Kimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi Harada

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takuya Itaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge