Katsutoshi Yuasa
Musashino University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katsutoshi Yuasa.
Gene Therapy | 2002
Katsutoshi Yuasa; M Sakamoto; Yuko Miyagoe-Suzuki; A Tanouchi; H Yamamoto; J Li; Jeffrey S. Chamberlain; X Xiao; Shin'ichi Takeda
Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscular disorder caused by a defect in the DMD gene. AAV vector-mediated micro-dystrophin cDNA transfer is an attractive approach to treatment of DMD. To establish effective gene transfer into skeletal muscle, we examined the transduction efficiency of an AAV vector in skeletal muscles of dystrophin-deficient mdx mice. When an AAV vector encoding the LacZ gene driven by a CMV promoter (AAV-CMVLacZ) was introduced, β-galactosidase expression markedly decreased in mdx muscle 4 weeks after injection due to immune responses against the transgene product. We also injected AAV-CMVLacZ into skeletal muscles of mini-dystrophin-transgenic mdx mice (CVBA3’), which show ameliorated phenotypes without overt signs of muscle degeneration. AAV vector administration, however, evoked substantial immune responses in CVBA3’ muscle. Importantly, AAV vector using muscle-specific MCK promoter also elicited responses in mdx muscle, but at a considerably later period. These results suggested that neo-antigens introduced by AAV vectors could evoke immune reactions in mdx muscle, since increased permeability allowed a leakage of neo-antigens from the dystrophin-deficient sarcolemma of muscle fibers. However, resident antigen-presenting cells, such as myoblasts, myotubes and regenerating immature myofibers, might also play a role in the immune response.
BMC Musculoskeletal Disorders | 2008
Katsutoshi Yuasa; Akinori Nakamura; Takao Hijikata; Shin'ichi Takeda
BackgroundSkeletal muscles are composed of heterogeneous collections of muscle fiber types, the arrangement of which contributes to a variety of functional capabilities in many muscle types. Furthermore, skeletal muscles can adapt individual myofibers under various circumstances, such as disease and exercise, by changing fiber types. This study was performed to examine the influence of dystrophin deficiency on fiber type composition of skeletal muscles in canine X-linked muscular dystrophy in Japan (CXMDJ), a large animal model for Duchenne muscular dystrophy.MethodsWe used tibialis cranialis (TC) muscles and diaphragms of normal dogs and those with CXMDJ at various ages from 1 month to 3 years old. For classification of fiber types, muscle sections were immunostained with antibodies against fast, slow, or developmental myosin heavy chain (MHC), and the number and size of these fibers were analyzed. In addition, MHC isoforms were detected by gel electrophoresis.ResultsIn comparison with TC muscles of CXMDJ, the number of fibers expressing slow MHC increased markedly and the number of fibers expressing fast MHC decreased with growth in the affected diaphragm. In populations of muscle fibers expressing fast and/or slow MHC(s) but not developmental MHC of CXMDJ muscles, slow MHC fibers were predominant in number and showed selective enlargement. Especially, in CXMDJ diaphragms, the proportions of slow MHC fibers were significantly larger in populations of myofibers with non-expression of developmental MHC. Analyses of MHC isoforms also indicated a marked increase of type I and decrease of type IIA isoforms in the affected diaphragm at ages over 6 months. In addition, expression of developmental (embryonic and/or neonatal) MHC decreased in the CXMDJ diaphragm in adults, in contrast to continuous high-level expression in affected TC muscle.ConclusionThe CXMDJ diaphragm showed marked changes in fiber type composition unlike TC muscles, suggesting that the affected diaphragm may be effectively adapted toward dystrophic stress by switching to predominantly slow fibers. Furthermore, the MHC expression profile in the CXMDJ diaphragm was markedly different from that in mdx mice, indicating that the dystrophic dog is a more appropriate model than a murine one, to investigate the mechanisms of respiratory failure in DMD.
Biochemical and Biophysical Research Communications | 2002
Miki Sakamoto; Katsutoshi Yuasa; Madoka Yoshimura; Toshifumi Yokota; Takaaki Ikemoto; Misao Suzuki; George Dickson; Yuko Miyagoe-Suzuki; Shin'ichi Takeda
The adeno-associated virus vector is a good tool for gene transfer into skeletal muscle, but the length of a gene that can be incorporated is limited. To develop a gene therapy for Duchenne muscular dystrophy, we generated a series of rod-truncated micro-dystrophin cDNAs: M3 (one rod repeat, 3.9 kb), AX11 (three rod repeats, 4.4 kb), and CS1 (four rod repeats, 4.9 kb). These micro-dystrophins, driven by a CAG promoter, were used to produce transgenic (Tg) mdx mice and all three micro-dystrophins were shown to localize at the sarcolemma together with the expression of dystrophin-associated proteins. Among them, CS1 greatly improved dystrophic phenotypes of mdx mice and contractile force of the diaphragm in particular was restored to the level of normal C57BL/10 mice. AX11 modestly ameliorated the dystrophic pathology, but, importantly, M3-Tg mdx mice still showed severe dystrophic phenotypes. These data suggest that the rod structure, and its length in particular, is crucial for the function of micro-dystrophin.
Gene Therapy | 2007
Katsutoshi Yuasa; Madoka Yoshimura; Nobuyuki Urasawa; S. Ohshima; John Howell; Akinori Nakamura; T. Hijikata; Yuko Miyagoe-Suzuki; Shin'ichi Takeda
Using murine models, we have previously demonstrated that recombinant adeno-associated virus (rAAV)-mediated microdystrophin gene transfer is a promising approach to treatment of Duchenne muscular dystrophy (DMD). To examine further therapeutic effects and the safety issue of rAAV-mediated microdystrophin gene transfer using larger animal models, such as dystrophic dog models, we first investigated transduction efficiency of rAAV in wild-type canine muscle cells, and found that rAAV2 encoding β-galactosidase effectively transduces canine primary myotubes in vitro. Subsequent rAAV2 transfer into skeletal muscles of normal dogs, however, resulted in low and transient expression of β-galactosidase together with intense cellular infiltrations in vivo, where cellular and humoral immune responses were remarkably activated. In contrast, rAAV2 expressing no transgene elicited no cellular infiltrations. Co-administration of immunosuppressants, cyclosporine and mycophenolate mofetil could partially improve rAAV2 transduction. Collectively, these results suggest that immune responses against the transgene product caused cellular infiltration and eliminated transduced myofibers in dogs. Furthermore, in vitro interferon-γ release assay showed that canine splenocytes respond to immunogens or mitogens more susceptibly than murine ones. Our results emphasize the importance to scrutinize the immune responses to AAV vectors in larger animal models before applying rAAV-mediated gene therapy to DMD patients.
Journal of Alzheimer's Disease | 2004
Hideo Hara; Alon Monsonego; Katsutoshi Yuasa; Kayo Adachi; Xiao Xiao; Shin'ichi Takeda; Keikichi Takahashi; Howard L. Weiner; Takeshi Tabira
A new oral vaccine for Alzheimers disease was developed using recombinant adeno-associated virus vector carrying Abeta cDNA (AAV/Abeta). Oral administration of the vaccine without adjuvant induced the expression and secretion of Abeta1-43 or Abeta1-21 in the epithelial cell layer of the intestine in amyloid precursor protein transgenic mice. Serum antibody levels were elevated for more than six months, while T cell proliferative responses to Abeta was not detected. Brain Abeta burden was significantly decreased compared to the control without inflammatory changes. This oral AAV/Abeta vaccine seems to be promising for prevention and treatment of Alzheimers disease.
Molecular Therapy | 2009
Sachiko Ohshima; Jin-Hong Shin; Katsutoshi Yuasa; Akiyo Nishiyama; Jun-ichi Kira; Takashi Okada; Shin'ichi Takeda
Recombinant adeno-associated virus (rAAV)-mediated gene transfer is an attractive approach to the treatment of Duchenne muscular dystrophy (DMD). We investigated the muscle transduction profiles and immune responses associated with the administration of rAAV2 and rAAV8 in normal and canine X-linked muscular dystrophy in Japan (CXMD(J)) dogs. rAAV2 or rAAV8 encoding the lacZ gene was injected into the skeletal muscles of normal dogs. Two weeks after the injection, we detected a larger number of beta-galactosidase-positive fibers in rAAV8-transduced canine skeletal muscle than in rAAV2-transduced muscle. Although immunohistochemical analysis using anti-CD4 and anti-CD8 antibodies revealed less T-cell response to rAAV8 than to rAAV2, beta-galactosidase expression in rAAV8-injected muscle lasted for <4 weeks with intramuscular transduction. Canine bone marrow-derived dendritic cells (DCs) were activated by both rAAV2 and rAAV8, implying that innate immunity might be involved in both cases. Intravenous administration of rAAV8-lacZ into the hind limb in normal dogs and rAAV8-microdystrophin into the hind limb in CXMD(J) dogs resulted in improved transgene expression in the skeletal muscles lasting over a period of 8 weeks, but with a declining trend. The limb perfusion transduction protocol with adequate immune modulation would further enhance the rAAV8-mediated transduction strategy and lead to therapeutic benefits in DMD gene therapy.
FEBS Letters | 1998
Katsutoshi Yuasa; Yuko Miyagoe; Kanji Yamamoto; Yo-ichi Nabeshima; George Dickson; Shin'ichi Takeda
A series of truncated dystrophin cDNAs (3.1–4.2 kbp) containing only three, three, two or one rod repeats with hinge 1 and 4 (named ΔDysAX2, AX11, AH3, M3, respectively) or no rod repeat retaining either hinge 1 or 4 (named ΔDysH1, H4, respectively) were constructed. These cDNAs were introduced into skeletal muscle of adult mdx mice using the adenovirus vector with a strong CAG promoter. ΔDysAX2, AX11, AH3 and ΔDysM3 expressed themselves successfully and recovered dystrophin‐associated proteins effectively. Especially 3.7 kbp cDNA for ΔDysM3 offers the possibility of an approach utilizing newly developed virus vectors, such as an adeno‐associated virus vector, toward gene therapy of Duchenne muscular dystrophy.
BMC Musculoskeletal Disorders | 2007
Kazuhiro Fukushima; Akinori Nakamura; Hideho Ueda; Katsutoshi Yuasa; Kunihiro Yoshida; Shin'ichi Takeda; Shu-ichi Ikeda
BackgroundMatrix metalloproteinases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of all extracellular matrix (ECM) components in both physiological and pathological processes in various tissues. The aim of this study was to examine the involvement of gelatinase MMP family members, MMP-2 and MMP-9, in dystrophin-deficient skeletal muscle. Towards this aim, we made use of the canine X-linked muscular dystrophy in Japan (CXMDJ) model, a suitable animal model for Duchenne muscular dystrophy.MethodsWe used surgically biopsied tibialis cranialis muscles of normal male dogs (n = 3) and CXMDJ dogs (n = 3) at 4, 5 and 6 months of age. Muscle sections were analyzed by conventional morphological methods and in situ zymography to identify the localization of MMP-2 and MMP-9. MMP-2 and MMP-9 activity was examined by gelatin zymography and the levels of the respective mRNAs in addition to those of regulatory molecules, including MT1-MMP, TIMP-1, TIMP-2, and RECK, were analyzed by semi-quantitative RT-PCR.ResultsIn CXMDJ skeletal muscle, multiple foci of both degenerating and regenerating muscle fibers were associated with gelatinolytic MMP activity derived from MMP-2 and/or MMP-9. In CXMDJ muscle, MMP-9 immunoreactivity localized to degenerated fibers with inflammatory cells. Weak and disconnected immunoreactivity of basal lamina components was seen in MMP-9-immunoreactive necrotic fibers of CXMDJ muscle. Gelatinolytic MMP activity observed in the endomysium of groups of regenerating fibers in CXMDJ did not co-localize with MMP-9 immunoreactivity, suggesting that it was due to the presence of MMP-2. We observed increased activities of pro MMP-2, MMP-2 and pro MMP-9, and levels of the mRNAs encoding MMP-2, MMP-9 and the regulatory molecules, MT1-MMP, TIMP-1, TIMP-2, and RECK in the skeletal muscle of CXMDJ dogs compared to the levels observed in normal controls.ConclusionMMP-2 and MMP-9 are likely involved in the pathology of dystrophin-deficient skeletal muscle. MMP-9 may be involved predominantly in the inflammatory process during muscle degeneration. In contrast, MMP-2, which was activated in the endomysium of groups of regenerating fibers, may be associated with ECM remodeling during muscle regeneration and fiber growth.
Journal of Cell Biology | 2002
Yukio Hosaka; Toshifumi Yokota; Yuko Miyagoe-Suzuki; Katsutoshi Yuasa; Michihiro Imamura; Ryoichi Matsuda; Takaaki Ikemoto; Shuhei Kameya; Shin Takeda
α1-Syntrophin is a member of the family of dystrophin-associated proteins; it has been shown to recruit neuronal nitric oxide synthase and the water channel aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, Discs-large, ZO-1 homologous domain. To examine the role of α1-syntrophin in muscle regeneration, we injected cardiotoxin into the tibialis anterior muscles of α1-syntrophin–null (α1syn−/−) mice. After the treatment, α1syn−/− muscles displayed remarkable hypertrophy and extensive fiber splitting compared with wild-type regenerating muscles, although the untreated muscles of the mutant mice showed no gross histological change. In the hypertrophied muscles of the mutant mice, the level of insulin-like growth factor-1 transcripts was highly elevated. Interestingly, in an early stage of the regeneration process, α1syn−/− mice showed remarkably deranged neuromuscular junctions (NMJs), accompanied by impaired ability to exercise. The contractile forces were reduced in α1syn−/− regenerating muscles. Our results suggest that the lack of α1-syntrophin might be responsible in part for the muscle hypertrophy, abnormal synapse formation at NMJs, and reduced force generation during regeneration of dystrophin-deficient muscle, all of which are typically observed in the early stages of Duchenne muscular dystrophy patients.
Journal of Neurochemistry | 2002
Wataru Araki; Katsutoshi Yuasa; Shin'ichi Takeda; Kazuya Takeda; Keiro Shirotani; Keikichi Takahashi; Takeshi Tabira
Presenilin 2 (PS2) is a polytopic membrane protein that is mutated in some cases of familial Alzheimers disease (AD). The normal functions of PS2 and its pathogenic role in AD remain unclear. We investigated the biological role of this protein in neurons, using adenovirus‐mediated transduction of the PS2 gene into rat primary cortical neurons. Immunocytochemical analyses demonstrated increased PS2 immunoreactivity in most neurons infected with recombinant adenoviruses expressing PS2. Neurons infected with wild‐type or mutant (N141I) PS2‐expressing adenoviruses showed a significant increase in basal cell death, compared with those infected with control β‐galactosidase‐expressing adenovirus. Moreover, PS2 overexpression markedly increased neuronal susceptibility to staurosporine‐induced apoptosis. Mutant PS2 was more effective in enhancing apoptosis than its wild‐type counterpart. Staurosporine‐induced death was significantly inhibited by a specific caspase 3 inhibitor. Western analyses revealed that Bcl‐2 protein expression was specifically down‐regulated in neurons overexpressing PS2, which temporally corresponded to the accumulation of C‐ and N‐terminal fragments of PS2. Additionally, expression of mutant, but not wild‐type PS2, increased the production of β‐amyloid protein (Aβ) 42. These data collectively suggest that the pro‐apoptotic effect of PS2 is mediated by down‐regulation of Bcl‐2. PS2 mutations may increase the susceptibility of neurons to apoptotic stimuli by perturbing the regulation of cell death.