Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katy J. Brocklehurst is active.

Publication


Featured researches published by Katy J. Brocklehurst.


Diabetologia | 2014

GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans

Virginia M. Stone; Shalinee Dhayal; Katy J. Brocklehurst; Carol Lenaghan; Maria Sörhede Winzell; Mårten Hammar; Xiufeng Xu; David M. Smith; Noel G. Morgan

Aims/hypothesisThe NEFA-responsive G-protein coupled receptor 120 (GPR120) has been implicated in the regulation of inflammation, in the control of incretin secretion and as a predisposing factor influencing the development of type 2 diabetes by regulation of islet cell apoptosis. However, there is still considerable controversy about the tissue distribution of GPR120 and, in particular, it remains unclear which islet cell types express this molecule. In the present study, we have addressed this issue by constructing a Gpr120-knockout/β-galactosidase (LacZ) knock-in (KO/KI) mouse to examine the distribution and functional role of GPR120 in the endocrine pancreas.MethodsA KO/KI mouse was generated in which exon 1 of the Gpr120 gene (also known as Ffar4) was replaced in frame by LacZ, thereby allowing for regulated expression of β-galactosidase under the control of the endogenous GPR120 promoter. The distribution of GPR120 was inferred from expression studies detecting β-galactosidase activity and protein production. Islet hormone secretion was measured from isolated mouse islets treated with selective GPR120 agonists.Resultsβ-galactosidase activity was detected as a surrogate for GPR120 expression exclusively in a small population of islet endocrine cells located peripherally within the islet mantle. Immunofluorescence analysis revealed co-localisation with somatostatin suggesting that GPR120 is preferentially produced in islet delta cells. In confirmation of this, glucose-induced somatostatin secretion was inhibited by a range of selective GPR120 agonists. This response was lost in GPR120-knockout mice.Conclusions/interpretationThe results imply that GPR120 is selectively present within the delta cells of murine islets and that it regulates somatostatin secretion.


Journal of Medicinal Chemistry | 2012

Use of small-molecule crystal structures to address solubility in a novel series of G protein coupled receptor 119 agonists: optimization of a lead and in vivo evaluation.

James S. Scott; Alan Martin Birch; Katy J. Brocklehurst; Anders Broo; Hayley S. Brown; Roger John Butlin; David S. Clarke; Öjvind Davidsson; Anne Ertan; Kristin Goldberg; Sam D. Groombridge; Julian A. Hudson; David Laber; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Adrian Pickup; Paul Schofield; Per H. Svensson; Pernilla Sörme; Joanne Teague

G protein coupled receptor 119 (GPR119) is viewed as an attractive target for the treatment of type 2 diabetes and other elements of the metabolic syndrome. During a program toward discovering agonists of GPR119, we herein describe optimization of an initial lead compound, 2, into a development candidate, 42. A key challenge in this program of work was the insolubility of the lead compound. Small-molecule crystallography was utilized to understand the intermolecular interactions in the solid state and resulted in a switch from an aryl sulphone to a 3-cyanopyridyl motif. The compound was shown to be effective in wild-type but not knockout animals, confirming that the biological effects were due to GPR119 agonism.


Biochemical Journal | 2004

Differences in regulatory properties between human and rat glucokinase regulatory protein

Katy J. Brocklehurst; Rick A. Davies; Loranne Agius

The inhibition of glucokinase by rat and Xenopus GKRPs (glucokinase regulatory protein) is well documented. We report a comparison of the effects of human and rat GKRPs on glucokinase activity. Human GKRP is a more potent inhibitor of glucokinase than rat GKRP in the absence of fructose 6-phosphate or sorbitol 6-phosphate, and has a higher affinity for these ligands. However, human and rat GKRPs have similar affinities for fructose 1-phosphate and chloride. Residues that are not conserved between the rodent and human proteins affect both the affinity for fructose 6-phosphate and sorbitol 6-phosphate and the inhibitory potency of GKRP on glucokinase in the absence of these ligands.


British Journal of Pharmacology | 2012

The cytoprotective effects of oleoylethanolamide in insulin-secreting cells do not require activation of GPR119

Virginia M. Stone; Shalinee Dhayal; David M. Smith; Carol Lenaghan; Katy J. Brocklehurst; Noel G. Morgan

BACKGROUND AND PURPOSE β‐cells express a range of fatty acid‐responsive G protein‐coupled receptors, including GPR119, which regulates insulin secretion and is seen as a potential therapeutic target in type 2 diabetes. The long‐chain unsaturated fatty acid derivative oleoylethanolamide (OEA) is an endogenous agonist of GPR119 and, under certain conditions, some long‐chain unsaturated fatty acids can promote β‐cell cytoprotection. It is not known, however, if OEA is cytoprotective in β‐cells. The present study has examined this and determined whether GPR119 is involved.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery, optimisation and in vivo evaluation of novel GPR119 agonists.

Katy J. Brocklehurst; Anders Broo; Roger John Butlin; Hayley S. Brown; David S. Clarke; Öjvind Davidsson; Kristin Goldberg; Sam D. Groombridge; Elizabeth E. Kelly; Andrew G. Leach; Darren Mckerrecher; Charles O’Donnell; Simon M. Poucher; Paul Schofield; James S. Scott; Joanne Teague; Leanne Westgate; Matt J.M. Wood

GPR119 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. During a programme aimed at developing agonists of the GPR119 receptor, we identified compounds that were potent with reduced hERG liabilities, that had good pharmacokinetic properties and that displayed excellent glucose-lowering effects in vivo. However, further profiling in a GPR119 knock-out (KO) mouse model revealed that the biological effects were not exclusively due to GPR119 agonism, highlighting the value of transgenic animals in drug discovery programs.


Journal of Molecular Endocrinology | 2011

Upregulation of β-cell genes and improved function in rodent islets following chronic glucokinase activation

Debra Gill; Katy J. Brocklehurst; Henry W G Brown; David M. Smith

Glucokinase (GK) plays a critical role in controlling blood glucose; GK activators have been shown to stimulate insulin secretion acutely both in vitro and in vivo. Sustained stimulation of insulin secretion could potentially lead to β-cell exhaustion; this study examines the effect of chronic GK activation on β-cells. Gene expression and insulin secretion were measured in rodent islets treated in vitro with GKA71 for 72 h. Key β-cell gene expression was measured in rat, mouse and global GK heterozygous knockout mouse islets (gk(del/wt)). Insulin secretion, after chronic exposure to GKA71, was measured in perifused rat islets. GKA71 acutely increased insulin secretion in rat islets in a glucose-dependent manner. Chronic culture of mouse islets with GKA71 in 5 mmol/l glucose significantly increased the expression of insulin, IAPP, GLUT2, PDX1 and PC1 and decreased the expression of C/EBPβ compared with 5 mmol/l glucose alone. Similar increases were shown for insulin, GLUT2, IAPP and PC1 in chronically treated rat islets. Insulin mRNA was also increased in GKA71-treated gk(del/wt) islets. No changes in GK mRNA were observed. Glucose-stimulated insulin secretion was improved in perifused rat islets following chronic treatment with GKA71. This was associated with a greater insulin content and GK protein level. Chronic treatment of rodent islets with GKA71 showed an upregulation of key β-cell genes including insulin and an increase in insulin content and GK protein compared with glucose alone.


Journal of Medicinal Chemistry | 2014

Circumventing Seizure Activity in a Series of G Protein Coupled Receptor 119 (GPR119) Agonists

James S. Scott; Suzanne S. Bowker; Katy J. Brocklehurst; Hayley S. Brown; David S. Clarke; Alison Easter; Anne Ertan; Kristin Goldberg; Julian A. Hudson; Stefan Kavanagh; David Laber; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Paul Schofield; Per H. Svensson; Joanne Teague

Agonism of GPR119 is viewed as a potential therapeutic approach for the treatment of type II diabetes and other elements of metabolic syndrome. During progression of a previously disclosed candidate 1 through mice toxicity studies, we observed tonic-clonic convulsions in several mice at high doses. An in vitro hippocampal brain slice assay was used to assess the seizure liability of subsequent compounds, leading to the identification of an aryl sulfone as a replacement for the 3-cyano pyridyl group. Subsequent optimization to improve the overall profile, specifically with regard to hERG activity, led to alkyl sulfone 16. This compound did not cause tonic-clonic convulsions in mice, had a good pharmacokinetic profile, and displayed in vivo efficacy in murine models. Importantly, it was shown to be effective in wild-type (WT) but not GPR119 knockout (KO) animals, consistent with the pharmacology observed being due to agonism of GPR119.


MedChemComm | 2013

Optimisation of aqueous solubility in a series of G protein coupled receptor 119 (GPR119) agonists

James S. Scott; Alan Martin Birch; Katy J. Brocklehurst; Hayley S. Brown; Kristin Goldberg; Sam D. Groombridge; Julian A. Hudson; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Ruth Poultney; Paul Schofield; Per H. Svensson

Improving aqueous solubility is a challenge frequently faced within drug discovery programs. Herein we describe increases in solubility in two sub-series of GPR119 agonists through reduction of lipophilicity together with hydrogen bond acceptor modulation. Small molecule X-ray crystallography was utilised to investigate effects on solid state interactions.


Bioorganic & Medicinal Chemistry Letters | 2013

Conformational restriction in a series of GPR119 agonists: Differences in pharmacology between mouse and human

James S. Scott; Katy J. Brocklehurst; Hayley S. Brown; David S. Clarke; Helen Coe; Sam D. Groombridge; David Laber; Philip A. MacFaul; Darren Mckerrecher; Paul Schofield

A series of conformationally restricted GPR119 agonists were prepared based around a 3,8-diazabicyclo[3.2.1]octane scaffold. Examples were found to have markedly different pharmacology in mouse and human despite similar levels of binding to the receptor. This highlights the large effects on GPCR phamacology that can result from small structural changes in the ligand, together with inter-species differences between receptors.


Diabetes | 2004

Stimulation of Hepatocyte Glucose Metabolism by Novel Small Molecule Glucokinase Activators

Katy J. Brocklehurst; Victoria A. Payne; Rick A. Davies; Debra Carroll; Helen L. Vertigan; Heather J. Wightman; Susan Aiston; Ian D. Waddell; Brendan Leighton; Matthew P. Coghlan; Loranne Agius

Collaboration


Dive into the Katy J. Brocklehurst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Leach

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge