Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin Goldberg is active.

Publication


Featured researches published by Kristin Goldberg.


Journal of Medicinal Chemistry | 2012

Use of small-molecule crystal structures to address solubility in a novel series of G protein coupled receptor 119 agonists: optimization of a lead and in vivo evaluation.

James S. Scott; Alan Martin Birch; Katy J. Brocklehurst; Anders Broo; Hayley S. Brown; Roger John Butlin; David S. Clarke; Öjvind Davidsson; Anne Ertan; Kristin Goldberg; Sam D. Groombridge; Julian A. Hudson; David Laber; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Adrian Pickup; Paul Schofield; Per H. Svensson; Pernilla Sörme; Joanne Teague

G protein coupled receptor 119 (GPR119) is viewed as an attractive target for the treatment of type 2 diabetes and other elements of the metabolic syndrome. During a program toward discovering agonists of GPR119, we herein describe optimization of an initial lead compound, 2, into a development candidate, 42. A key challenge in this program of work was the insolubility of the lead compound. Small-molecule crystallography was utilized to understand the intermolecular interactions in the solid state and resulted in a switch from an aryl sulphone to a 3-cyanopyridyl motif. The compound was shown to be effective in wild-type but not knockout animals, confirming that the biological effects were due to GPR119 agonism.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery, optimisation and in vivo evaluation of novel GPR119 agonists.

Katy J. Brocklehurst; Anders Broo; Roger John Butlin; Hayley S. Brown; David S. Clarke; Öjvind Davidsson; Kristin Goldberg; Sam D. Groombridge; Elizabeth E. Kelly; Andrew G. Leach; Darren Mckerrecher; Charles O’Donnell; Simon M. Poucher; Paul Schofield; James S. Scott; Joanne Teague; Leanne Westgate; Matt J.M. Wood

GPR119 is increasingly seen as an attractive target for the treatment of type II diabetes and other elements of the metabolic syndrome. During a programme aimed at developing agonists of the GPR119 receptor, we identified compounds that were potent with reduced hERG liabilities, that had good pharmacokinetic properties and that displayed excellent glucose-lowering effects in vivo. However, further profiling in a GPR119 knock-out (KO) mouse model revealed that the biological effects were not exclusively due to GPR119 agonism, highlighting the value of transgenic animals in drug discovery programs.


Journal of Medicinal Chemistry | 2014

Circumventing Seizure Activity in a Series of G Protein Coupled Receptor 119 (GPR119) Agonists

James S. Scott; Suzanne S. Bowker; Katy J. Brocklehurst; Hayley S. Brown; David S. Clarke; Alison Easter; Anne Ertan; Kristin Goldberg; Julian A. Hudson; Stefan Kavanagh; David Laber; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Paul Schofield; Per H. Svensson; Joanne Teague

Agonism of GPR119 is viewed as a potential therapeutic approach for the treatment of type II diabetes and other elements of metabolic syndrome. During progression of a previously disclosed candidate 1 through mice toxicity studies, we observed tonic-clonic convulsions in several mice at high doses. An in vitro hippocampal brain slice assay was used to assess the seizure liability of subsequent compounds, leading to the identification of an aryl sulfone as a replacement for the 3-cyano pyridyl group. Subsequent optimization to improve the overall profile, specifically with regard to hERG activity, led to alkyl sulfone 16. This compound did not cause tonic-clonic convulsions in mice, had a good pharmacokinetic profile, and displayed in vivo efficacy in murine models. Importantly, it was shown to be effective in wild-type (WT) but not GPR119 knockout (KO) animals, consistent with the pharmacology observed being due to agonism of GPR119.


MedChemComm | 2013

Optimisation of aqueous solubility in a series of G protein coupled receptor 119 (GPR119) agonists

James S. Scott; Alan Martin Birch; Katy J. Brocklehurst; Hayley S. Brown; Kristin Goldberg; Sam D. Groombridge; Julian A. Hudson; Andrew G. Leach; Philip A. MacFaul; Darren Mckerrecher; Ruth Poultney; Paul Schofield; Per H. Svensson

Improving aqueous solubility is a challenge frequently faced within drug discovery programs. Herein we describe increases in solubility in two sub-series of GPR119 agonists through reduction of lipophilicity together with hydrogen bond acceptor modulation. Small molecule X-ray crystallography was utilised to investigate effects on solid state interactions.


Journal of Medicinal Chemistry | 2018

Discovery of N-{4-[(6,7-dimethoxyquinazolin-4-yl)oxy]phenyl}-2-[4-(propan-2-yl)-1H-1,2,3-triazol-1-yl]acetamide (AZD3229), a potent pan-KIT mutant inhibitor for the treatment of gastrointestinal stromal tumors

Jason Grant Kettle; Rana Anjum; Evan Barry; Deepa Bhavsar; Crystal Brown; Scott Boyd; Andrew Campbell; Kristin Goldberg; Michael Grondine; Sylvie Guichard; Christopher Hardy; Tom Hunt; Rhys D.O. Jones; Xiuwei Li; Olga Moleva; Derek Ogg; Ross Overman; Martin J. Packer; Stuart E. Pearson; Marianne Schimpl; Wenlin Shao; Aaron Smith; James M. Smith; Darren Stead; Steve Stokes; Michael Tucker; Yang Ye

While the treatment of gastrointestinal stromal tumors (GISTs) has been revolutionized by the application of targeted tyrosine kinase inhibitors capable of inhibiting KIT-driven proliferation, diverse mutations to this kinase drive resistance to established therapies. Here we describe the identification of potent pan-KIT mutant kinase inhibitors that can be dosed without being limited by the tolerability issues seen with multitargeted agents. This effort focused on identification and optimization of an existing kinase scaffold through the use of structure-based design. Starting from a series of previously reported phenoxyquinazoline and quinoline based inhibitors of the tyrosine kinase PDGFRα, potency against a diverse panel of mutant KIT driven Ba/F3 cell lines was optimized, with a particular focus on reducing activity against a KDR driven cell model in order to limit the potential for hypertension commonly seen in second and third line GIST therapies. AZD3229 demonstrates potent single digit nM growth inhibition across a broad cell panel, with good margin to KDR-driven effects. Selectivity over KDR can be rationalized predominantly by the interaction of water molecules with the protein and ligand in the active site, and its kinome selectivity is similar to the best of the approved GIST agents. This compound demonstrates excellent cross-species pharmacokinetics, shows strong pharmacodynamic inhibition of target, and is active in several in vivo models of GIST.


ACS Medicinal Chemistry Letters | 2018

Discovery of a Series of 3-Cinnoline Carboxamides as Orally Bioavailable, Highly Potent, and Selective ATM Inhibitors

Bernard Barlaam; Elaine Cadogan; Andrew Campbell; Nicola Colclough; Allan Dishington; Stephen T. Durant; Kristin Goldberg; Lorraine Hassall; Gareth Hughes; Philip A. MacFaul; Thomas M. McGuire; Martin Pass; Anil Patel; Stuart E. Pearson; Jens Petersen; Kurt Gordon Pike; Graeme R. Robb; Natalie Stratton; Guohong Xin; Baochang Zhai

We report the discovery of a novel series of 3-cinnoline carboxamides as highly potent and selective ataxia telangiectasia mutated (ATM) kinase inhibitors. Optimization of this series focusing on potency and physicochemical properties (especially permeability) led to the identification of compound 21, a highly potent ATM inhibitor (ATM cell IC50 0.0028 μM) with excellent kinase selectivity and favorable physicochemical and pharmacokinetics properties. In vivo, 21 in combination with irinotecan showed tumor regression in the SW620 colorectal tumor xenograft model, superior inhibition to irinotecan alone. Compound 21 was selected for preclinical evaluation alongside AZD0156.


MedChemComm | 2012

Oxadiazole isomers: all bioisosteres are not created equal

Kristin Goldberg; Sam D. Groombridge; Julian A. Hudson; Andrew G. Leach; Philip A. MacFaul; Adrian Pickup; Ruth Poultney; James S. Scott; Per H. Svensson; Joseph B. Sweeney


MedChemComm | 2013

Achieving improved permeability by hydrogen bond donor modulation in a series of MGAT2 inhibitors

James S. Scott; David J. Berry; Hayley S. Brown; Linda K. Buckett; David S. Clarke; Kristin Goldberg; Julian A. Hudson; Andrew G. Leach; Philip A. MacFaul; Piotr Raubo; Graeme R. Robb


Tetrahedron Letters | 2014

A facile synthesis of 3-trifluoromethyl-1,2,4-oxadiazoles from cyanamides

Kristin Goldberg; David S. Clarke; James S. Scott


Journal of Medicinal Chemistry | 2017

Sustainable Practices in Medicinal Chemistry Part 2: Green by Design

Ignacio Aliagas; Raphaëlle Berger; Kristin Goldberg; Rachel T. Nishimura; John Reilly; Paul G. Richardson; Daniel T. Richter; Edward C. Sherer; Brian A. Sparling; Marian C. Bryan

Collaboration


Dive into the Kristin Goldberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. Leach

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per H. Svensson

Royal Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge