Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katy Roach is active.

Publication


Featured researches published by Katy Roach.


The Journal of Allergy and Clinical Immunology | 2008

Airway hyperresponsiveness is dissociated from airway wall structural remodeling.

Salman Siddiqui; Vijay Mistry; Camille Doe; Katy Roach; Angela Morgan; Andrew J. Wardlaw; Ian D. Pavord; Peter Bradding; Christopher E. Brightling

BACKGROUND Nonasthmatic eosinophilic bronchitis (EB) has emerged as a useful tool to study the structural and inflammatory mechanisms of airway hyperresponsiveness (AHR) in asthma. We have previously shown that vascular remodeling and reticular basement membrane (RBM) thickening are present in EB. However, it is not known whether other features of structural remodeling including increased airway smooth muscle (ASM) mass, matrix deposition, and glandular hyperplasia are also present in EB. OBJECTIVES We sought to determine whether structural remodeling occurs in EB and is associated with AHR and airflow limitation. METHODS Forty-two patients with asthma, 21 patients with EB, and 19 healthy volunteers were recruited. ASM area, RBM thickness, collagen 3 deposition, glandular area, mast cells, and granulocytes were assessed in bronchial biopsy samples. RESULTS Nonasthmatic eosinophilic bronchitis and asthma were associated with a significant increase in ASM mass and RBM thickness compared with healthy subjects. In contrast, we did not observe any significant differences in collagen 3 deposition in the lamina propria and ASM or the % area of glands in the lamina propria. Univariate analysis demonstrated that mast cell numbers in the ASM were the only feature of remodeling associated with AHR (beta = -0.51; P = .004). Stepwise linear regression revealed that a combination of mast cell numbers in the ASM (beta = -0.43) and disease duration (beta = -0.25; model-adjusted R(2) = 0.26; P = .027) best modeled AHR. CONCLUSION Mast cell localization to the ASM bundle, but not structural remodeling of the airway wall, is associated with AHR in asthma.


PLOS ONE | 2013

The K+ channel KCa3.1 as a novel target for idiopathic pulmonary fibrosis.

Katy Roach; Stephen Mark Duffy; William R. Coward; Carol A. Feghali-Bostwick; Heike Wulff; Peter Bradding

Background Idiopathic pulmonary fibrosis (IPF) is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that KCa3.1 K+ channel-dependent cell processes contribute to IPF pathophysiology. Methods KCa3.1 expression in primary human lung myofibroblasts was examined using RT-PCR, western blot, immunofluorescence and patch-clamp electrophysiology. The role of KCa3.1 channels in myofibroblast proliferation, wound healing, collagen secretion and contraction was examined using two specific and distinct KCa3.1 blockers (TRAM-34 and ICA-17043 [Senicapoc]). Results Both healthy non fibrotic control and IPF-derived human lung myofibroblasts expressed KCa3.1 channel mRNA and protein. KCa3.1 ion currents were elicited more frequently and were larger in IPF-derived myofibroblasts compared to controls. KCa3.1 currents were increased in myofibroblasts by TGFβ1 and basic FGF. KCa3.1 was expressed strongly in IPF tissue. KCa3.1 pharmacological blockade attenuated human myofibroblast proliferation, wound healing, collagen secretion and contractility in vitro, and this was associated with inhibition of TGFβ1-dependent increases in intracellular free Ca2+. Conclusions KCa3.1 activity promotes pro-fibrotic human lung myofibroblast function. Blocking KCa3.1 may offer a novel approach to treating IPF with the potential for rapid translation to the clinic.


Respiratory Research | 2014

Increased constitutive αSMA and Smad2/3 expression in idiopathic pulmonary fibrosis myofibroblasts is KCa3.1-dependent

Katy Roach; Heike Wulff; Carol Feghali-Bostwick; Yassine Amrani; Peter Bradding

BackgroundIdiopathic pulmonary fibrosis is a common and invariably fatal disease with limited therapeutic options. Ca2+-activated KCa3.1 potassium channels play a key role in promoting TGFβ1 and bFGF-dependent profibrotic responses in human lung myofibroblasts (HLMFs). We hypothesised that KCa3.1 channel-dependent cell processes regulate HLMF αSMA expression via Smad2/3 signalling pathways.MethodsIn this study we have compared the phenotype of HLMFs derived from non-fibrotic healthy control lungs (NFC) with cells derived from IPF lungs. HLMFs grown in vitro were examined for αSMA expression by immunofluorescence (IF), RT-PCR and flow cytommetry. Basal Smad2/3 signalling was examined by RT-PCR, western blot and immunofluorescence. Two specific and distinct KCa3.1 blockers (TRAM-34 200 nM and ICA-17043 [Senicapoc] 100 nM) were used to determine their effects on HLMF differentiation and the Smad2/3 signalling pathways.ResultsIPF-derived HLMFs demonstrated increased constitutive expression of both α-smooth muscle actin (αSMA) and actin stress fibres, indicative of greater myofibroblast differentiation. This was associated with increased constitutive Smad2/3 mRNA and protein expression, and increased Smad2/3 nuclear localisation. The increased Smad2/3 nuclear localisation was inhibited by removing extracellular Ca2+ or blocking KCa3.1 ion channels with selective KCa3.1 blockers (TRAM-34, ICA-17043). This was accompanied by de-differentiation of IPF-derived HLMFs towards a quiescent fibroblast phenotype as demonstrated by reduced αSMA expression and reduced actin stress fibre formation.ConclusionsTaken together, these data suggest that Ca2+- and KCa3.1-dependent processes facilitate “constitutive” Smad2/3 signalling in IPF-derived fibroblasts, and thus promote fibroblast to myofibroblast differentiation. Importantly, inhibiting KCa3.1 channels reverses this process. Targeting KCa3.1 may therefore provide a novel and effective approach for the treatment of IPF and there is the potential for the rapid translation of KCa3.1-directed therapy to the clinic.


PLOS ONE | 2013

CADM1 is a key receptor mediating human mast cell adhesion to human lung fibroblasts and airway smooth muscle cells.

Elena P. Moiseeva; Katy Roach; Mark L. Leyland; Peter Bradding

Background Mast cells (MCs) play a central role in the development of many diseases including asthma and pulmonary fibrosis. Interactions of human lung mast cells (HLMCs) with human airway smooth muscle cells (HASMCs) are partially dependent on adhesion mediated by cell adhesion molecule-1 (CADM1), but the adhesion mechanism through which HLMCs interact with human lung fibroblasts (HLFs) is not known. CADM1 is expressed as several isoforms (SP4, SP1, SP6) in HLMCs, with SP4 dominant. These isoforms differentially regulate HLMC homotypic adhesion and survival. Objective In this study we have investigated the role of CADM1 isoforms in the adhesion of HLMCs and HMC-1 cells to primary HASMCs and HLFs. Methods CADM1 overexpression or downregulation was achieved using adenoviral delivery of CADM1 short hairpin RNAs or isoform-specific cDNAs respectively. Results Downregulation of CADM1 attenuated both HLMC and HMC-1 adhesion to both primary HASMCs and HLFs. Overexpression of either SP1 or SP4 isoforms did not alter MC adhesion to HASMCs, whereas overexpression of SP4, but not SP1, significantly increased both HMC-1 cell and HLMC adhesion to HLFs. The expression level of CADM1 SP4 strongly predicted the extent of MC adhesion; linear regression indicated that CADM1 accounts for up to 67% and 32% of adhesion to HLFs for HMC-1 cells and HLMCs, respectively. HLFs supported HLMC proliferation and survival through a CADM1-dependent mechanism. With respect to CADM1 counter-receptor expression, HLFs expressed both CADM1 and nectin-3, whereas HASMCs expressed only nectin-3. Conclusion and Clinical Relevance Collectively these data indicate that the CADM1 SP4 isoform is a key receptor mediating human MC adhesion to HASMCs and HLFs. The differential expression of CADM1 counter-receptors on HLFs compared to HASMCs may allow the specific targeting of either HLMC-HLF or HLMC-HASMC interactions in the lung parenchyma and airways.


Fibrogenesis & Tissue Repair | 2015

Human lung myofibroblast TGFβ1-dependent Smad2/3 signalling is Ca2+-dependent and regulated by KCa3.1 K+ channels

Katy Roach; Carol Feghali-Bostwick; Heike Wulff; Yassine Amrani; Peter Bradding

BackgroundIdiopathic pulmonary fibrosis (IPF) is a common and invariably lethal interstitial lung disease with poorly effective therapy. Blockade of the K+ channel KCa3.1 reduces constitutive α-SMA and Smad2/3 nuclear translocation in IPF-derived human lung myofibroblasts (HLMFs), and inhibits several transforming growth factor beta 1 (TGFβ1)-dependent cell processes. We hypothesized that KCa3.1-dependent cell processes also regulate the TGFβ1-dependent Smad2/3 signalling pathway in HLMFs. HLMFs obtained from non-fibrotic controls (NFC) and IPF lungs were grown in vitro and examined for αSMA expression by immunofluorescence, RT-PCR, and flow cytometry. Two specific and distinct KCa3.1 blockers (TRAM-34 200 nM and ICA-17043 [Senicapoc] 100 nM) were used to determine their effects on TGFβ1-dependent signalling. Expression of phosphorylated and total Smad2/3 following TGFβ1 stimulation was determined by Western blot and Smad2/3 nuclear translocation by immunofluorescence.ResultsKCa3.1 block attenuated TGFβ1-dependent Smad2/3 phosphorylation and nuclear translocation, and this was mimicked by lowering the extracellular Ca2+ concentration. KCa3.1 block also inhibited Smad2/3-dependent gene transcription (αSMA, collagen type I), inhibited KCa3.1 mRNA expression, and attenuated TGFβ1-dependent αSMA protein expression.ConclusionsKCa3.1 activity regulates TGFβ1-dependent effects in NFC- and IPF-derived primary HLMFs through the regulation of the TGFβ1/Smad signalling pathway, with promotion of downstream gene transcription and protein expression. KCa3.1 blockers may offer a novel approach to treating IPF.


Journal of Immunology | 2015

Lipoxin A4 Attenuates Constitutive and TGF-β1–Dependent Profibrotic Activity in Human Lung Myofibroblasts

Katy Roach; Carol Feghali-Bostwick; Yassine Amrani; Peter Bradding

Idiopathic pulmonary fibrosis (IPF) is a common, progressive, and invariably lethal interstitial lung disease with no effective therapy. The key cell driving the development of fibrosis is the myofibroblast. Lipoxin A4 (LXA4) is an anti-inflammatory lipid, important in the resolution of inflammation, and it has potential antifibrotic activity. However, the effects of LXA4 on primary human lung myofibroblasts (HLMFs) have not previously been investigated. Therefore, the aim of this study was to examine the effects of LXA4 on TGF-β1–dependent responses in IPF- and nonfibrotic control (NFC)–derived HLMFs. HLMFs were isolated from IPF and NFC patients and grown in vitro. The effects of LXA4 on HLMF proliferation, collagen secretion, α-smooth muscle actin (αSMA) expression, and Smad2/3 activation were examined constitutively and following TGF-β1 stimulation. The LXA4 receptor (ALXR) was expressed in both NFC- and IPF-derived HLMFs. LXA4 (10−10 and 10−8 mol) reduced constitutive αSMA expression, actin stress fiber formation, contraction, and nuclear Smad2/3, indicating regression from a myofibroblast to fibroblast phenotype. LXA4 also significantly inhibited FBS-dependent proliferation and TGF-β1–dependent collagen secretion, αSMA expression, and Smad2/3 nuclear translocation in IPF-derived HLMFs. LXA4 did not inhibit Smad2/3 phosphorylation. In summary, LXA4 attenuated profibrotic HLMF activity and promoted HLMF regression to a quiescent fibroblast phenotype. LXA4 or its stable analogs delivered by aerosol may offer a novel approach to the treatment of IPF.


PLOS ONE | 2015

KCa3.1 K+ Channel Expression and Function in Human Bronchial Epithelial Cells.

Greer Arthur; S. Mark Duffy; Katy Roach; Robert A. Hirst; Aarti Shikotra; Erol Gaillard; Peter Bradding

The KCa3.1 K+ channel has been proposed as a novel target for pulmonary diseases such as asthma and pulmonary fibrosis. It is expressed in epithelia but its expression and function in primary human bronchial epithelial cells (HBECs) has not been described. Due to its proposed roles in the regulation of cell proliferation, migration, and epithelial fluid secretion, inhibiting this channel might have either beneficial or adverse effects on HBEC function. The aim of this study was to assess whether primary HBECs express the KCa3.1 channel and its role in HBEC function. Primary HBECs from the airways of healthy and asthmatic subjects, SV-transformed BEAS-2B cells and the neoplastic H292 epithelial cell line were studied. Primary HBECs, BEAS-2B and H292 cells expressed KCa3.1 mRNA and protein, and robust KCa3.1 ion currents. KCa3.1 protein expression was increased in asthmatic compared to healthy airway epithelium in situ, and KCa3.1 currents were larger in asthmatic compared to healthy HBECs cultured in vitro. Selective KCa3.1 blockers (TRAM-34, ICA-17043) had no effect on epithelial cell proliferation, wound closure, ciliary beat frequency, or mucus secretion. However, several features of TGFβ1-dependent epithelial-mesenchymal transition (EMT) were inhibited by KCa3.1 blockade. Treatment with KCa3.1 blockers is likely to be safe with respect to airway epithelial biology, and may potentially inhibit airway remodelling through the inhibition of EMT.


American Journal of Respiratory Cell and Molecular Biology | 2017

Inhibition of the KCa3.1 Channel Alleviates Established Pulmonary Fibrosis in a Large Animal Model

Louise Organ; Barbara Bacci; Emmanuel Koumoundouros; Wayne G. Kimpton; Chrishan S. Samuel; Cameron J. Nowell; Peter Bradding; Katy Roach; Glen P. Westall; Jade Jaffar; Kenneth J. Snibson

&NA; Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease of increasing prevalence marked by poor prognosis and limited treatment options. Ca2+‐activated KCa3.1 potassium channels have been shown to play a key role in the aberrant activation and responses to injury in both epithelial cells and fibroblasts, both considered key drivers in the fibrotic process of IPF. Pharmacological inhibition of IPF‐derived fibroblasts is able to somewhat prevent TGF‐&bgr;‐ and basic fibroblast growth factor‐dependent profibrotic responses. In the current study, we investigated whether blockade of the KCa3.1 ion channel in vivo with a selective inhibitor, Senicapoc, was able to attenuate both histological and physiological outcomes of early fibrosis in our large animal (sheep) model for pulmonary fibrosis. We also determined whether treatment was targeting the profibrotic activity of sheep lung fibroblasts. Senicapoc was administered in established fibrosis, at 2 weeks after bleomycin instillation, and drug efficacy was assessed 4 weeks after treatment. Treatment with Senicapoc improved pre‐established bleomycin‐induced changes compared with vehicle control, leading to improved lung compliance, reduced extracellular matrix and collagen deposition, and a reduction in both &agr;‐smooth muscle actin expression and proliferating cells, both in vivo and in vitro. These studies show that inhibiting the KCa3.1 ion channel is able to attenuate the early fibrogenic phase of bleomycin‐dependent fibrosis and inhibits profibrotic behavior of primary sheep lung fibroblasts. This supports the previous research conducted in human IPF‐derived fibroblasts and suggests that inhibiting KCa3.1 signaling may provide a novel therapeutic approach for IPF.


Allergy | 2017

Myeloid-derived suppressor cell-like fibrocytes are increased and associated with preserved lung function in chronic obstructive pulmonary disease

Adam K.A. Wright; Chris Newby; R A Hartley; Mistry; Sumit Gupta; Rachid Berair; Katy Roach; Ruth Saunders; Tracy Thornton; Maria Shelley; K Edwards; Bethan Barker; Christopher E. Brightling

The role of fibrocytes in chronic obstructive pulmonary disease (COPD) is unknown. We sought to enumerate blood and tissue fibrocytes in COPD and determine the association of blood fibrocytes with clinical features of disease.


Scientific Reports | 2018

A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis

Katy Roach; Amanda Sutcliffe; Laura Matthews; Gill Elliott; Chris Newby; Yassine Amrani; Peter Bradding

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited therapeutic options. KCa3.1 ion channels play a critical role in TGFβ1-dependent pro-fibrotic responses in human lung myofibroblasts. We aimed to develop a human lung parenchymal model of fibrogenesis and test the efficacy of the selective KCa3.1 blocker senicapoc. 2 mm3 pieces of human lung parenchyma were cultured for 7 days in DMEM ± TGFβ1 (10 ng/ml) and pro-fibrotic pathways examined by RT-PCR, immunohistochemistry and collagen secretion. Following 7 days of culture with TGFβ1, 41 IPF- and fibrosis-associated genes were significantly upregulated. Immunohistochemical staining demonstrated increased expression of ECM proteins and fibroblast-specific protein after TGFβ1-stimulation. Collagen secretion was significantly increased following TGFβ1-stimulation. These pro-fibrotic responses were attenuated by senicapoc, but not by dexamethasone. This 7 day ex vivo model of human lung fibrogenesis recapitulates pro-fibrotic events evident in IPF and is sensitive to KCa3.1 channel inhibition. By maintaining the complex cell-cell and cell-matrix interactions of human tissue, and removing cross-species heterogeneity, this model may better predict drug efficacy in clinical trials and accelerate drug development in IPF. KCa3.1 channels are a promising target for the treatment of IPF.

Collaboration


Dive into the Katy Roach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Feghali-Bostwick

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Chris Newby

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Heike Wulff

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijay Mistry

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille Doe

University of Leicester

View shared research outputs
Researchain Logo
Decentralizing Knowledge