Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaustuv Sanyal is active.

Publication


Featured researches published by Kaustuv Sanyal.


PLOS Genetics | 2014

Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation.

Guilhem Janbon; Kate L. Ormerod; Damien Paulet; Edmond J. Byrnes; Vikas Yadav; Gautam Chatterjee; Nandita Mullapudi; Chung Chau Hon; R. Blake Billmyre; François Brunel; Yong Sun Bahn; Weidong Chen; Yuan Chen; Eve W. L. Chow; Jean Yves Coppée; Anna Floyd-Averette; Claude Gaillardin; Kimberly J. Gerik; Jonathan M. Goldberg; Sara Gonzalez-Hilarion; Sharvari Gujja; Joyce L. Hamlin; Yen-Ping Hsueh; Giuseppe Ianiri; Steven J.M. Jones; Chinnappa D. Kodira; Lukasz Kozubowski; Woei Lam; Marco A. Marra; Larry D. Mesner

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Formation of functional centromeric chromatin is specified epigenetically in Candida albicans

Mary Baum; Kaustuv Sanyal; Prashant Mishra; Nathaniel Thaler; John Carbon

In the pathogenic yeast Candida albicans, the 3-kb centromeric DNA regions (CEN) of each of the eight chromosomes have different and unique DNA sequences. The centromeric histone CaCse4p (CENP-A homolog) occurs only within these 3-kb CEN regions to form specialized centromeric chromatin. Centromere activity was maintained on small chromosome fragments derived in vivo by homologous recombination of a native chromosome with linear DNA fragments containing a telomere and a selectable marker. An in vivo derived 85-kb truncated chromosome containing the 3-kb CEN7 locus on 69 kb of chromosome 7 DNA was stably and autonomously maintained in mitosis, indicating that preexisting active CEN chromatin remains functional through many generations. This same 85-kb chromosome fragment, isolated as naked DNA (devoid of chromatin proteins) from C. albicans and reintroduced back into C. albicans cells by standard DNA transformation techniques, was unable to reform functional CEN chromatin and was mitotically unstable. Comparison of active and inactive CEN chromatin digested with micrococcal nuclease revealed that periodic nucleosome arrays are disrupted at active centromeres. Chromatin immunoprecipitation with antibodies against CaCse4p confirmed that CEN7 introduced into C. albicans cells as naked DNA did not recruit CaCse4p or induce its spread to a duplicate region only 7 kb away from active CEN7 chromatin. These results indicate that CaCse4p recruitment and centromere activation are epigenetically specified and maintained in C. albicans.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis

Sreedevi Padmanabhan; Jitendra Thakur; Rahul Siddharthan; Kaustuv Sanyal

The Cse4p-containing centromere regions of Candida albicans have unique and different DNA sequences on each of the eight chromosomes. In a closely related yeast, C. dubliniensis, we have identified the centromeric histone, CdCse4p, and shown that it is localized at the kinetochore. We have identified putative centromeric regions, orthologous to the C. albicans centromeres, in each of the eight C. dubliniensis chromosomes by bioinformatic analysis. Chromatin immunoprecipitation followed by PCR using a specific set of primers confirmed that these regions bind CdCse4p in vivo. As in C. albicans, the CdCse4p-associated core centromeric regions are 3–5 kb in length and show no sequence similarity to one another. Comparative sequence analysis suggests that the Cse4p-rich centromere DNA sequences in these two species have diverged faster than other orthologous intergenic regions and even faster than our best estimated “neutral” mutation rate. However, the location of the centromere and the relative position of Cse4p-rich centromeric chromatin in the orthologous regions with respect to adjacent ORFs are conserved in both species, suggesting that centromere identity is not solely determined by DNA sequence. Unlike known point and regional centromeres of other organisms, centromeres in C. albicans and C. dubliniensis have no common centromere-specific sequence motifs or repeats except some of the chromosome-specific pericentric repeats that are found to be similar in these two species. We propose that centromeres of these two Candida species are of an intermediate type between point and regional centromeres.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission

Kaustuv Sanyal; John Carbon

The gene encoding CaCse4p, a homolog of the evolutionarily conserved histone H3-like kinetochore protein CENP-A, has been cloned from the human pathogenic diploid yeast Candida albicans. To study the phenotype of C. albicans diploid cells depleted of CaCse4p, we deleted one copy of CaCSE4 and brought the other copy under control of a regulated PCK1 promoter (repressed by glucose and induced by succinate). Inability of this strain to grow on glucose medium indicates that CaCse4p is essential for cell viability. Shutdown of CaCSE4 expression resulted in a sharp decline of CaCse4p levels with concomitant loss of cell viability. Examination of these CaCse4p-depleted cells revealed a mitosis-specific arrest phenotype with accumulation of large-budded cells containing single G2 nuclei at or near the bud neck along with short mitotic spindles. Subcellular localization of CaCse4p by anti-CaCse4p antibodies in both budding and filamentous C. albicans cells revealed an intense dot-like signal always colocalized with 4′,6-diamidino-2-phenylindole-stained nuclei. Unlike higher eukaryotes but similar to the budding yeast Saccharomyces cerevisiae, centromere separation in the budding yeast form of C. albicans occurs before anaphase, at a very early stage of the cell cycle. In the filamentous mode of cell division, however, centromere separation appears to occur in early anaphase. Coimmunostaining with anti-CaCse4p and antitubulin antibodies shows that CaCse4p localizes near spindle pole bodies, analogous to the localization pattern observed for kinetochore proteins in S. cerevisiae. CaCse4p promises to be a highly useful reagent for the study of centromere/kinetochore structure in C. albicans.


ACS Applied Materials & Interfaces | 2015

Broad Spectrum Antibacterial and Antifungal Polymeric Paint Materials: Synthesis, Structure–Activity Relationship, and Membrane-Active Mode of Action

Jiaul Hoque; Padma Akkapeddi; Vikas Yadav; Goutham B. Manjunath; Divakara S. S. M. Uppu; Mohini M. Konai; Venkateswarlu Yarlagadda; Kaustuv Sanyal; Jayanta Haldar

Microbial attachment and subsequent colonization onto surfaces lead to the spread of deadly community-acquired and hospital-acquired (nosocomial) infections. Noncovalent immobilization of water insoluble and organo-soluble cationic polymers onto a surface is a facile approach to prevent microbial contamination. In the present study, we described the synthesis of water insoluble and organo-soluble polymeric materials and demonstrated their structure-activity relationship against various human pathogenic bacteria including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and beta lactam-resistant Klebsiella pneumoniae as well as pathogenic fungi such as Candida spp. and Cryptococcus spp. The polymer coated surfaces completely inactivated both bacteria and fungi upon contact (5 log reduction with respect to control). Linear polymers were more active and found to have a higher killing rate than the branched polymers. The polymer coated surfaces also exhibited significant activity in various complex mammalian fluids such as serum, plasma, and blood and showed negligible hemolysis at an amount much higher than minimum inhibitory amounts (MIAs). These polymers were found to have excellent compatibility with other medically relevant polymers (polylactic acid, PLA) and commercial paint. The cationic hydrophobic polymer coatings disrupted the lipid membrane of both bacteria and fungi and thus showed a membrane-active mode of action. Further, bacteria did not develop resistance against these membrane-active polymers in sharp contrast to conventional antibiotics and lipopeptides, thus the polymers hold great promise to be used as coating materials for developing permanent antimicrobial paint.


Genome Research | 2013

Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans

Jitendra Thakur; Kaustuv Sanyal

CENPA/Cse4 assembles centromeric chromatin on diverse DNA. CENPA chromatin is epigenetically propagated on unique and different centromere DNA sequences in a pathogenic yeast Candida albicans. Formation of neocentromeres on DNA, nonhomologous to native centromeres, indicates a role of non-DNA sequence determinants in CENPA deposition. Neocentromeres have been shown to form at multiple loci in C. albicans when a native centromere was deleted. However, the process of site selection for CENPA deposition on native or neocentromeres in the absence of defined DNA sequences remains elusive. By systematic deletion of CENPA chromatin-containing regions of variable length of different chromosomes, followed by mapping of neocentromere loci in C. albicans and its related species Candida dubliniensis, which share similar centromere properties, we demonstrate that the chromosomal location is an evolutionarily conserved primary determinant of CENPA deposition. Neocentromeres on the altered chromosome are always formed close to the site which was once occupied by the native centromere. Interestingly, repositioning of CENPA chromatin from the neocentromere to the native centromere occurs by gene conversion in C. albicans.


Eukaryotic Cell | 2011

Diversity in Requirement of Genetic and Epigenetic Factors for Centromere Function in Fungi

Babhrubahan Roy; Kaustuv Sanyal

ABSTRACT A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species.


PLOS Genetics | 2012

A Coordinated Interdependent Protein Circuitry Stabilizes the Kinetochore Ensemble to Protect CENP-A in the Human Pathogenic Yeast Candida albicans

Jitendra Thakur; Kaustuv Sanyal

Unlike most eukaryotes, a kinetochore is fully assembled early in the cell cycle in budding yeasts Saccharomyces cerevisiae and Candida albicans. These kinetochores are clustered together throughout the cell cycle. Kinetochore assembly on point centromeres of S. cerevisiae is considered to be a step-wise process that initiates with binding of inner kinetochore proteins on specific centromere DNA sequence motifs. In contrast, kinetochore formation in C. albicans, that carries regional centromeres of 3–5 kb long, has been shown to be a sequence independent but an epigenetically regulated event. In this study, we investigated the process of kinetochore assembly/disassembly in C. albicans. Localization dependence of various kinetochore proteins studied by confocal microscopy and chromatin immunoprecipitation (ChIP) assays revealed that assembly of a kinetochore is a highly coordinated and interdependent event. Partial depletion of an essential kinetochore protein affects integrity of the kinetochore cluster. Further protein depletion results in complete collapse of the kinetochore architecture. In addition, GFP-tagged kinetochore proteins confirmed similar time-dependent disintegration upon gradual depletion of an outer kinetochore protein (Dam1). The loss of integrity of a kinetochore formed on centromeric chromatin was demonstrated by reduced binding of CENP-A and CENP-C at the centromeres. Most strikingly, Western blot analysis revealed that gradual depletion of any of these essential kinetochore proteins results in concomitant reduction in cellular protein levels of CENP-A. We further demonstrated that centromere bound CENP-A is protected from the proteosomal mediated degradation. Based on these results, we propose that a coordinated interdependent circuitry of several evolutionarily conserved essential kinetochore proteins ensures integrity of a kinetochore formed on the foundation of CENP-A containing centromeric chromatin.


Eukaryotic Cell | 2011

The Essentiality of the Fungus-Specific Dam1 Complex Is Correlated with a One-Kinetochore-One-Microtubule Interaction Present throughout the Cell Cycle, Independent of the Nature of a Centromere

Jitendra Thakur; Kaustuv Sanyal

ABSTRACT A fungus-specific outer kinetochore complex, the Dam1 complex, is essential in Saccharomyces cerevisiae, nonessential in fission yeast, and absent from metazoans. The reason for the reductive evolution of the functionality of this complex remains unknown. Both Candida albicans and Schizosaccharomyces pombe have regional centromeres as opposed to the short-point centromeres of S. cerevisiae. The interaction of one microtubule per kinetochore is established both in S. cerevisiae and C. albicans early during the cell cycle, which is in contrast to the multiple microtubules that bind to a kinetochore only during mitosis in S. pombe. Moreover, the Dam1 complex is associated with the kinetochore throughout the cell cycle in S. cerevisiae and C. albicans but only during mitosis in S. pombe. Here, we show that the Dam1 complex is essential for viability and indispensable for proper mitotic chromosome segregation in C. albicans. The kinetochore localization of the Dam1 complex is independent of the kinetochore-microtubule interaction, but the function of this complex is monitored by a spindle assembly checkpoint. Strikingly, the Dam1 complex is required to prevent precocious spindle elongation in premitotic phases. Thus, constitutive kinetochore localization associated with a one-microtubule-one kinetochore type of interaction, but not the length of a centromere, is correlated with the essentiality of the Dam1 complex.


Molecular Microbiology | 2011

CaMtw1, a member of the evolutionarily conserved Mis12 kinetochore protein family, is required for efficient inner kinetochore assembly in the pathogenic yeast Candida albicans.

Babhrubahan Roy; Laura S. Burrack; Museer A. Lone; Judith Berman; Kaustuv Sanyal

Proper assembly of the kinetochore, a multi‐protein complex that mediates attachment of centromere DNA to spindle microtubules on each chromosome, is required for faithful chromosome segregation. Each previously characterized member of the Mis12/Mtw1 protein family is part of an essential subcomplex in the kinetochore. In this work, we identify and characterize CaMTW1, which encodes the homologue of the human Mis12 protein in the pathogenic budding yeast Candida albicans. Subcellular localization and chromatin immunoprecipitation assays confirmed CaMtw1 is a kinetochore protein. CaMtw1 is essential for viability. CaMtw1‐depleted cells and cells in which CaMtw1 was inactivated with a temperature‐sensitive mutation had reduced viability, accumulated at the G2/M stage of the cell cycle, and exhibited increased chromosome missegregation. CaMtw1 depletion also affected spindle length and alignment. Interestingly, in C. albicans, CaMtw1 and the centromeric histone, CaCse4, influence each other for kinetochore localization. In addition, CaMtw1 is required for efficient kinetochore recruitment of another inner kinetochore protein, the CENP‐C homologue, CaMif2. Mis12/Mtw1 proteins have well‐established roles in the recruitment and maintenance of outer kinetochore proteins. We propose that Mis12/Mtw1 proteins also have important co‐dependent interactions with inner kinetochore proteins and that these interactions may increase the fidelity of kinetochore formation.

Collaboration


Dive into the Kaustuv Sanyal's collaboration.

Top Co-Authors

Avatar

Vikas Yadav

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Jitendra Thakur

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Shreyas Sridhar

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gautam Chatterjee

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Jayanta Haldar

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Lakshmi Sreekumar

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Sreedevi Padmanabhan

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

Sundar Ram Sankaranarayanan

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge