Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kavita Bhalla is active.

Publication


Featured researches published by Kavita Bhalla.


Cancer Cell | 2013

PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress

Francisca Vazquez; Ji-Hong Lim; Helen Chim; Kavita Bhalla; Geoff Girnun; Kerry A. Pierce; Clary B. Clish; Scott R. Granter; Hans R. Widlund; Bruce M. Spiegelman; Pere Puigserver

Cancer cells reprogram their metabolism using different strategies to meet energy and anabolic demands to maintain growth and survival. Understanding the molecular and genetic determinants of these metabolic programs is critical to successfully exploit them for therapy. Here, we report that the oncogenic melanocyte lineage-specification transcription factor MITF drives PGC1α (PPARGC1A) overexpression in a subset of human melanomas and derived cell lines. Functionally, PGC1α positive melanoma cells exhibit increased mitochondrial energy metabolism and reactive oxygen species (ROS) detoxification capacities that enable survival under oxidative stress conditions. Conversely, PGC1α negative melanoma cells are more glycolytic and sensitive to ROS-inducing drugs. These results demonstrate that differences in PGC1α levels in melanoma tumors have a profound impact in their metabolism, biology, and drug sensitivity.


Journal of Human Genetics | 2004

The de novo chromosome 16 translocations of two patients with abnormal phenotypes (mental retardation and epilepsy) disrupt the A2BP1 gene

Kavita Bhalla; Hilary Anne Phillips; Joanna Crawford; Olivia Ld McKenzie; John C. Mulley; Helen J. Eyre; Alison Gardner; Gabriel Kremmidiotis; David F. Callen

AbstractThe 16p13.3 breakpoints of two de novo translocations of chromosome 16, t(1;16) and t(14;16), were shown by initial mapping studies to have physically adjacent breakpoints. The translocations were ascertained in patients with abnormal phenotypes characterized by predominant epilepsy in one patient and mental retardation in the other. Distamycin/DAPI banding showed that the chromosome 1 breakpoint of the t(1;16) was in the pericentric heterochromatin therefore restricting potential gene disruption to the 16p13.3 breakpoint. The breakpoints of the two translocations were localized to a region of 3.5 and 115 kb respectively and were approximately 900 kb apart. The mapping was confirmed by fluorescence in situ hybridization (FISH) of clones that spanned the breakpoints to metaphase spreads derived from the patients. The mapping data showed both translocations disrupted the ataxin-2-binding protein 1 (A2BP1) gene that encompasses a large genomic region of 1.7 Mb. A2BP1 encodes a protein that is known to interact with the spinocerebellar ataxia type 2 (SCA2) protein. It is proposed that disruption of the A2BP1 gene is a cause of the abnormal phenotype of the two patients. Ninety-six patients with sporadic epilepsy and 96 female patients with mental retardation were screened by SSCP for potential mutations of A2BP1. No mutations were found, suggesting that disruption of the A2BP1 gene is not a common cause of sporadic epilepsy or mental retardation.


Cancer Research | 2011

PGC1α Promotes Tumor Growth by Inducing Gene Expression Programs Supporting Lipogenesis

Kavita Bhalla; Bor Jang Hwang; Ruby Dewi; Lihui Ou; William Twaddel; Hong-Bin Fang; Scott Vafai; Francisca Vazquez; Pere Puigserver; Laszlo G. Boros; Geoffrey D. Girnun

Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared with adjacent normal tissue. Paradoxically, other studies show that PGC1α is associated with cancer cell proliferation. Therefore, the role of PGC1α in cancer and especially carcinogenesis is unclear. Using Pgc1α(-/-) and Pgc1α(+/+) mice, we show that loss of PGC1α protects mice from azoxymethane-induced colon carcinogenesis. Similarly, diethylnitrosamine-induced liver carcinogenesis is reduced in Pgc1α(-/-) mice as compared with Pgc1α(+/+) mice. Xenograft studies using gain and loss of PGC1α expression showed that PGC1α also promotes tumor growth. Interestingly, while PGC1α induced oxidative phosphorylation and tricarboxylic acid cycle gene expression, we also observed an increase in the expression of two genes required for de novo fatty acid synthesis, ACC and FASN. In addition, SLC25A1 and ACLY, which are required for the conversion of glucose into acetyl-CoA for fatty acid synthesis, were also increased by PGC1α, thus linking the oxidative and lipogenic functions of PGC1α. Indeed, using stable (13)C isotope tracer analysis, we show that PGC1α increased de novo lipogenesis. Importantly, inhibition of fatty acid synthesis blunted these progrowth effects of PGC1α. In conclusion, these studies show for the first time that loss of PGC1α protects against carcinogenesis and that PGC1α coordinately regulates mitochondrial and fatty acid metabolism to promote tumor growth.


Cancer Prevention Research | 2012

Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis.

Kavita Bhalla; Bor Jang Hwang; Ruby Dewi; William Twaddel; Olga Goloubeva; Kwok-Kin Wong; Neeraj K. Saxena; Shyam Biswal; Geoffrey D. Girnun

A number of factors have been identified that increase the risk of hepatocellular carcinoma (HCC). Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention. The biguanide metformin is a first-line therapy for the treatment of type II diabetes in which it exerts its effects primarily on the liver. A role of metformin in HCC is suggested by studies linking metformin intake for control of diabetes with a reduced risk of HCC. Although a number of preclinical studies show the anticancer properties of metformin in a number of tissues, no studies have directly examined the effect of metformin on preventing carcinogenesis in the liver, one of its main sites of action. We show in these studies that metformin protected mice against chemically induced liver tumors. Interestingly, metformin did not increase AMPK activation, often shown to be a metformin target. Rather metformin decreased the expression of several lipogenic enzymes and lipogenesis. In addition, restoring lipogenic gene expression by ectopic expression of the lipogenic transcription factor SREBP1c rescues metformin-mediated growth inhibition. This mechanism of action suggests that metformin may also be useful for patients with other disorders associated with HCC in which increased lipid synthesis is observed. As a whole these studies show that metformin prevents HCC and that metformin should be evaluated as a preventive agent for HCC in readily identifiable at-risk patients. Cancer Prev Res; 5(4); 544–52. ©2012 AACR.


American Journal of Human Genetics | 2008

Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability

Kavita Bhalla; Yue Luo; Tim Buchan; Michael A. Beachem; Gregory F. Guzauskas; Sydney Ladd; Shelly J. Bratcher; Richard J. Schroer; Janne Balsamo; Barbara R. DuPont; Jack Lilien; Anand K. Srivastava

Cell-adhesion molecules play critical roles in brain development, as well as maintaining synaptic structure, function, and plasticity. Here we have found the disruption of two genes encoding putative cell-adhesion molecules, CDH15 (cadherin superfamily) and KIRREL3 (immunoglobulin superfamily), by a chromosomal translocation t(11;16) in a female patient with intellectual disability (ID). We screened coding regions of these two genes in a cohort of patients with ID and controls and identified four nonsynonymous CDH15 variants and three nonsynonymous KIRREL3 variants that appear rare and unique to ID. These variations altered highly conserved residues and were absent in more than 600 unrelated patients with ID and 800 control individuals. Furthermore, in vivo expression studies showed that three of the CDH15 variations adversely altered its ability to mediate cell-cell adhesion. We also show that in neuronal cells, human KIRREL3 colocalizes and interacts with the synaptic scaffolding protein, CASK, recently implicated in X-linked brain malformation and ID. Taken together, our data suggest that alterations in CDH15 and KIRREL3, either alone or in combination with other factors, could play a role in phenotypic expression of ID in some patients.


Molecular Cell | 2015

PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth

Emily Montal; Ruby Dewi; Kavita Bhalla; Lihui Ou; Bor Jang Hwang; Ashley E. Ropell; Chris Gordon; Wan Ju Liu; Ralph J. DeBerardinis; Jessica Sudderth; William Twaddel; Laszlo G. Boros; Kenneth R. Shroyer; Sekhar Duraisamy; Ronny Drapkin; R. Scott Powers; Jason M. Rohde; Matthew B. Boxer; Kwok-Kin Wong; Geoffrey D. Girnun

Phosphoenolpyruvate carboxykinase (PEPCK) is well known for its role in gluconeogenesis. However, PEPCK is also a key regulator of TCA cycle flux. The TCA cycle integrates glucose, amino acid, and lipid metabolism depending on cellular needs. In addition, biosynthetic pathways crucial to tumor growth require the TCA cycle for the processing of glucose and glutamine derived carbons. We show here an unexpected role for PEPCK in promoting cancer cell proliferation in vitro and in vivo by increasing glucose and glutamine utilization toward anabolic metabolism. Unexpectedly, PEPCK also increased the synthesis of ribose from non-carbohydrate sources, such as glutamine, a phenomenon not previously described. Finally, we show that the effects of PEPCK on glucose metabolism and cell proliferation are in part mediated via activation of mTORC1. Taken together, these data demonstrate a role for PEPCK that links metabolic flux and anabolic pathways to cancer cell proliferation.


Diabetes | 2014

Cyclin D1 Represses Gluconeogenesis via Inhibition of the Transcriptional Coactivator PGC1α

Kavita Bhalla; Wan-Ju Liu; Keyata Thompson; Lars Anders; Srikripa Devarakonda; Ruby Dewi; Stephanie Buckley; Bor-Jang Hwang; Brian M. Polster; Susan G. Dorsey; Yezhou Sun; Piotr Sicinski; Geoffrey D. Girnun

Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1–mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator–activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.


Journal of Biological Chemistry | 2011

N-Acetylfarnesylcysteine Is a Novel Class of Peroxisome Proliferator-activated Receptor γ Ligand with Partial and Full Agonist Activity in Vitro and in Vivo

Kavita Bhalla; Bor Jang Hwang; Jang Hyun Choi; Ruby Dewi; Lihui Ou; John Mclenithan; William Twaddel; Edwin Pozharski; Jeffry B. Stock; Geoffrey D. Girnun

The thiazolidedione (TZD) class of drugs is clinically approved for the treatment of type 2 diabetes. The therapeutic actions of TZDs are mediated via activation of peroxisome proliferator-activated receptor γ (PPARγ). Despite their widespread use, concern exists regarding the safety of currently used TZDs. This has prompted the development of selective PPARγ modulators (SPPARMs), compounds that promote glucose homeostasis but with reduced side effects due to partial PPARγ agonism. However, this also results in partial agonism with respect to PPARγ target genes promoting glucose homeostasis. Using a gene expression-based screening approach we identified N-acetylfarnesylcysteine (AFC) as both a full and partial agonist depending on the PPARγ target gene (differential SPPARM). AFC activated PPARγ as effectively as rosiglitazone with regard to Adrp, Angptl4, and AdipoQ, but was a partial agonist of aP2, a PPARγ target gene associated with increased adiposity. Induction of adipogenesis by AFC was also attenuated compared with rosiglitazone. Reporter, ligand binding assays, and dynamic modeling demonstrate that AFC binds and activates PPARγ in a unique manner compared with other PPARγ ligands. Importantly, treatment of mice with AFC improved glucose tolerance similar to rosiglitazone, but AFC did not promote weight gain to the same extent. Finally, AFC had effects on adipose tissue remodeling similar to those of rosiglitazone and had enhanced antiinflammatory effects. In conclusion, we describe a new approach for the identification of differential SPPARMs and have identified AFC as a novel class of PPARγ ligand with both full and partial agonist activity in vitro and in vivo.


Chromosoma | 2002

A complex rearrangement involving simultaneous translocation and inversion is associated with a change in chromatin compaction.

David F. Callen; Helen J. Eyre; McDonnell S; Simone Schuffenhauer; Kavita Bhalla

Abstract. Detailed fluorescence in situ hybridisation analysis of a previously described translocation revealed it to be a more complex rearrangement consisting of both a translocation and a paracentric inversion with an apparent coincident breakpoint at 16p13.3, t(14;16)(p32;p13.3) inv16(p13.3p12.1). This unusual three-breakpoint rearrangement was not obvious from examination of G-banding. Such rearrangements may be undiagnosed in cytogenetic studies. The presence of an interstitial deletion of 16p was unlikely as the rearranged chromosome contained probes distributed along the short arm of chromosome 16. Fluorescence in situ hybridisation studies suggested that the inverted segment was smaller in size than that on the normal chromosome. Measurements of distances between probes on metaphase chromosomes confirmed that there was differential compaction of the inverted portion on 16p. The inverted region was significantly reduced in size by 21% compared with the same region on the normal chromosome 16. The size reduction across the region was non-uniform, with one region showing a 55% increase in compaction. The change in compaction was also associated with a change in the lateral position of a probe on the chromatids. The finding that a single chromosome breakpoint can change the compaction of chromatin over an extensive region has implications for models of the structure of metaphase chromosomes. Possible explanations are either a localized severe disruption of DNA packaging over relatively short distances (hundreds of kilobases) or a more generalized change that extends over many megabases. These results raise the important possibility that chromosome breaks may result in a more global change in DNA compaction across large segments of a chromosome.


PLOS ONE | 2013

A polymorphic 3'UTR element in ATP1B1 regulates alternative polyadenylation and is associated with blood pressure.

Megana Prasad; Kavita Bhalla; Zhen Hua Pan; Jeffrey R. O’Connell; Alan B. Weder; Aravinda Chakravarti; Bin Tian; Yen-Pei C. Chang

Although variants in many genes have previously been shown to be associated with blood pressure (BP) levels, the molecular mechanism underlying these associations are mostly unknown. We identified a multi-allelic T-rich sequence (TRS) in the 3’UTR of ATP1B1 that varies in length and sequence composition (T22-27 and T12GT 3GT6). The 3’UTR of ATP1B1 contains 2 functional polyadenylation signals and the TRS is downstream of the proximal polyadenylation site (A2). Therefore, we hypothesized that alleles of this TRS might influence ATP1B1 expression by regulating alternative polyadenylation. In vitro, the T12GT 3GT6 allele increases polyadenylation at the A2 polyadenylation site as compared to the T23 allele. Consistent with our hypothesis, the relative abundance of the A2-polyadenylated ATP1B1 mRNA was higher in human kidneys with at least one copy of the T12GT 3GT6 allele than in those lacking this allele. The T12GT 3GT6 allele is also associated with higher systolic BP (beta = 3.3 mmHg, p = 0.014) and diastolic BP (beta = 2.4 mmHg, p = 0.003) in a European-American population. Therefore, we have identified a novel multi-allelic TRS in the 3’UTR of ATP1B1 that is associated with higher BP and may mediate its effect by regulating the polyadenylation of the ATP1B1 mRNA.

Collaboration


Dive into the Kavita Bhalla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruby Dewi

University of Maryland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihui Ou

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Helen J. Eyre

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge