Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kavita Praveen is active.

Publication


Featured researches published by Kavita Praveen.


Developmental Cell | 2009

Nuclear Bodies: Random Aggregates of Sticky Proteins or Crucibles of Macromolecular Assembly?

A. Gregory Matera; Mario Izaguire-Sierra; Kavita Praveen; T.K. Rajendra

The principles of self-assembly and self-organization are major tenets of molecular and cellular biology. Governed by these principles, the eukaryotic nucleus is composed of numerous subdomains and compartments, collectively described as nuclear bodies. Emerging evidence reveals that associations within and between various nuclear bodies and genomic loci are dynamic and can change in response to cellular signals. This review will discuss recent progress in our understanding of how nuclear body components come together, what happens when they form, and what benefit these subcellular structures may provide to the tissues or organisms in which they are found.


Cell Reports | 2012

A Drosophila Model of Spinal Muscular Atrophy Uncouples snRNP Biogenesis Functions of Survival Motor Neuron from Locomotion and Viability Defects

Kavita Praveen; Ying Wen; A. Gregory Matera

The spinal muscular atrophy (SMA) protein, survival motor neuron (SMN), functions in the biogenesis of small nuclear ribonucleoproteins (snRNPs). SMN has also been implicated in tissue-specific functions; however, it remains unclear which of these is important for the etiology of SMA. Smn null mutants display larval lethality and show significant locomotion defects as well as reductions in minor-class spliceosomal snRNAs. Despite these reductions, we found no appreciable defects in the splicing of mRNAs containing minor-class introns. Transgenic expression of low levels of either wild-type or an SMA patient-derived form of SMN rescued the larval lethality and locomotor defects; however, snRNA levels were not restored. Thus, the snRNP biogenesis function of SMN is not a major contributor to the phenotype of Smn null mutants. These findings have major implications for SMA etiology because they show that SMNs role in snRNP biogenesis can be uncoupled from the organismal viability and locomotor defects.


RNA | 2013

Developmental arrest of Drosophila survival motor neuron (Smn) mutants accounts for differences in expression of minor intron-containing genes

Eric L. Garcia; Zhipeng Lu; Michael P. Meers; Kavita Praveen; A. Gregory Matera

Reduced levels of survival motor neuron (SMN) protein lead to a neuromuscular disease called spinal muscular atrophy (SMA). Animal models of SMA recapitulate many aspects of the human disease, including locomotion and viability defects, but have thus far failed to uncover the causative link between a lack of SMN protein and neuromuscular dysfunction. While SMN is known to assemble small nuclear ribonucleoproteins (snRNPs) that catalyze pre-mRNA splicing, it remains unclear whether disruptions in splicing are etiologic for SMA. To investigate this issue, we carried out RNA deep-sequencing (RNA-seq) on age-matched Drosophila Smn-null and wild-type larvae. Comparison of genome-wide mRNA expression profiles with publicly available data sets revealed the timing of a developmental arrest in the Smn mutants. Furthermore, genome-wide differences in splicing between wild-type and Smn animals did not correlate with changes in mRNA levels. Specifically, we found that mRNA levels of genes that contain minor introns vary more over developmental time than they do between wild-type and Smn mutants. An analysis of reads mapping to minor-class intron-exon junctions revealed only small changes in the splicing of minor introns in Smn larvae, within the normal fluctuations that occur throughout development. In contrast, Smn mutants displayed a prominent increase in levels of stress-responsive transcripts, indicating a systemic response to the developmental arrest induced by loss of SMN protein. These findings not only provide important mechanistic insight into the developmental arrest displayed by Smn mutants, but also argue against a minor-intron-dependent etiology for SMA.


F1000 Medicine Reports | 2015

Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder

Kavita Praveen; Erica E. Davis; Nicholas Katsanis

Primary ciliary dyskinesia (PCD) is a ciliopathy, but represents the sole entity from this class of disorders that results from the dysfunction of motile cilia. Characterized by respiratory problems appearing in childhood, infertility, and situs defects in ~50% of individuals, PCD has an estimated prevalence of approximately 1 in 10,000 live births. The diagnosis of PCD can be prolonged due to a lack of disease awareness, coupled with the fact that symptoms can be confused with other more common genetic disorders, such as cystic fibrosis, or environmental insults that result in frequent respiratory infections. A primarily autosomal recessive disorder, PCD is genetically heterogeneous with >30 causal genes identified, posing significant challenges to genetic diagnosis. Here, we provide an overview of PCD as a disorder underscored by impaired ciliary motility; we discuss the recent advances towards uncovering the genetic basis of PCD; we discuss the molecular knowledge gained from PCD gene discovery, which has improved our understanding of motile ciliary assembly; and we speculate on how accelerated diagnosis, together with detailed phenotypic data, will shape the genetic and functional architecture of this disorder.


Molecular Biology of the Cell | 2009

Gemin3 Is an Essential Gene Required for Larval Motor Function and Pupation in Drosophila

Karl B. Shpargel; Kavita Praveen; T.K. Rajendra; A. Gregory Matera

The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction.


RNA | 2008

Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster.

Graydon B. Gonsalvez; Kavita Praveen; Amanda J. Hicks; Liping Tian; A. Gregory Matera

Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis. However, in Drosophila, loss of Dart5 (the fruit fly PRMT5 ortholog) has little effect on snRNP assembly, and homozygous mutants are completely viable. To resolve these apparent differences, we examined this topic in detail and found that Drosophila Sm proteins are also methylated by two methyltransferases, Dart5/PRMT5 and Dart7/PRMT7. Unlike dart5, we found that dart7 is an essential gene. However, the lethality associated with loss of Dart7 protein is apparently unrelated to defects in snRNP assembly. To conclusively test the requirement for sDMA modification of Sm proteins in Drosophila snRNP assembly, we constructed a fly strain that exclusively expresses an isoform of SmD1 that cannot be sDMA modified. Interestingly, these flies were viable, and snRNP assays revealed no defects in comparison to wild type. In contrast, dart5 mutants displayed a strong synthetic lethal phenotype in the presence of a hypomorphic Smn mutation. We therefore conclude that dart5 is required for viability when SMN is limiting.


PLOS Genetics | 2014

SMA-Causing Missense Mutations in Survival motor neuron (Smn) Display a Wide Range of Phenotypes When Modeled in Drosophila

Kavita Praveen; Ying Wen; Kelsey M. Gray; John J. Noto; Akash R. Patlolla; Gregory D. Van Duyne; A. Gregory Matera

Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMNs role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.


Development | 2010

Sm proteins specify germ cell fate by facilitating oskar mRNA localization

Graydon B. Gonsalvez; T.K. Rajendra; Ying Wen; Kavita Praveen; A. Gregory Matera

Sm and Sm-like proteins are RNA-binding factors found in all three domains of life. Eukaryotic Sm proteins play essential roles in pre-mRNA splicing, forming the cores of spliceosomal small nuclear ribonucleoproteins (snRNPs). Recently, Sm proteins have been implicated in the specification of germ cells. However, a mechanistic understanding of their involvement in germline specification is lacking and a germline-specific RNA target has not been identified. We demonstrate that Drosophila SmB and SmD3 are specific components of the oskar messenger ribonucleoprotein (mRNP), proper localization of which is required for establishing germline fate and embryonic patterning. Importantly, oskar mRNA is delocalized in females harboring a hypomorphic mutation in SmD3, and embryos from mutant mothers are defective in germline specification. We conclude that Sm proteins function to establish the germline in Drosophila, at least in part by mediating oskar mRNA localization.


American Journal of Respiratory Cell and Molecular Biology | 2016

DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes

Gerard W. Dougherty; Niki T. Loges; Judith A. Klinkenbusch; Heike Olbrich; Petra Pennekamp; Tabea Menchen; Johanna Raidt; Julia Wallmeier; Claudius Werner; Cordula Westermann; Christian Ruckert; Virginia Mirra; Rim Hjeij; Yasin Memari; Richard Durbin; Anja Kolb-Kokocinski; Kavita Praveen; Mohammad Amin Kashef; Sara Kashef; Fardin Eghtedari; Karsten Häffner; Pekka Valmari; György Baktai; Micha Aviram; Lea Bentur; Israel Amirav; Erica E. Davis; Nicholas Katsanis; Martina Brueckner; Artem Shaposhnykov

Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.


Epilepsia | 2012

Familial focal epilepsy with variable foci mapped to chromosome 22q12: Expansion of the phenotypic spectrum

Karl Martin Klein; Terence J. O'Brien; Kavita Praveen; Sarah E. Heron; John C. Mulley; Simon J. Foote; Samuel F. Berkovic; Ingrid E. Scheffer

We aimed to refine the phenotypic spectrum and map the causative gene in two families with familial focal epilepsy with variable foci (FFEVF). A new five‐generation Australian FFEVF family (A) underwent electroclinical phenotyping, and the original four‐generation Australian FFEVF family (B) (Ann Neurol, 44, 1998, 890) was re‐analyzed, including new affected individuals. Mapping studies examined segregation at the chromosome 22q12 FFEVF region. In family B, the original whole genome microsatellite data was reviewed. Five subjects in family A and 10 in family B had FFEVF with predominantly awake attacks and active EEG studies with a different phenotypic picture from other families. In family B, reanalysis excluded the tentative 2q locus reported. Both families mapped to chromosome 22q12. Our results confirm chromosome 22q12 as the solitary locus for FFEVF. Both families show a subtly different phenotype to other published families extending the clinical spectrum of FFEVF.

Collaboration


Dive into the Kavita Praveen's collaboration.

Top Co-Authors

Avatar

A. Gregory Matera

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ying Wen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric L. Garcia

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

T.K. Rajendra

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graydon B. Gonsalvez

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akash R. Patlolla

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Hicks

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Claudius Werner

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge