Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay Metcalfe is active.

Publication


Featured researches published by Kay Metcalfe.


American Journal of Human Genetics | 1999

Williams Syndrome: Use of Chromosomal Microdeletions as a Tool to Dissect Cognitive and Physical Phenotypes

Mayada Tassabehji; Kay Metcalfe; Annette Karmiloff-Smith; Martin Carette; Julia Grant; Nick Dennis; Willie Reardon; Miranda Splitt; Andrew P. Read; Dian Donnai

In Williams syndrome (WS), a deletion of approximately 1.5 Mb on one copy of chromosome 7 causes specific physical, cognitive, and behavioral abnormalities. Molecular dissection of the phenotype may be a route to identification of genes important in human cognition and behavior. Among the genes known to be deleted in WS are ELN (which encodes elastin), LIMK1 (which encodes a protein tyrosine kinase expressed in the developing brain), STX1A (which encodes a component of the synaptic apparatus), and FZD3. Study of patients with deletions or mutations confined to ELN showed that hemizygosity for elastin is responsible for the cardiological features of WS. LIMK1 and STX1A are good candidates for cognitive or behavioral aspects of WS. Here we describe genetic and psychometric testing of patients who have small deletions within the WS critical region. Our results suggest that neither LIMK1 hemizygosity (contrary to a previous report) nor STX1A hemizygosity is likely to contribute to any part of the WS phenotype, and they emphasize the importance of such patients for dissecting subtle but highly penetrant phenotypes.


Science | 2005

GTF2IRD1 in Craniofacial Development of Humans and Mice

May Tassabehji; Peter Hammond; Annette Karmiloff-Smith; Pamela Thompson; Snorri S. Thorgeirsson; Marian E. Durkin; Nicholas C. Popescu; Timothy Hutton; Kay Metcalfe; Agnes Rucka; Helen Stewart; Andrew P. Read; Mark Maconochie; Dian Donnai

Craniofacial abnormalities account for about one-third of all human congenital defects, but our understanding of the genetic mechanisms governing craniofacial development is incomplete. We show that GTF2IRD1 is a genetic determinant of mammalian craniofacial and cognitive development, and we implicate another member of the TFII-I transcription factor family, GTF2I, in both aspects. Gtf2ird1-null mice exhibit phenotypic abnormalities reminiscent of the human microdeletion disorder Williams-Beuren syndrome (WBS); craniofacial imaging reveals abnormalities in both skull and jaws that may arise through misregulation of goosecoid, a downstream target of Gtf2ird1. In humans, a rare WBS individual with an atypical deletion, including GTF2IRD1, shows facial dysmorphism and cognitive deficits that differ from those of classic WBS cases. We propose a mechanism of cumulative dosage effects of duplicated and diverged genes applicable to other human chromosomal disorders.


American Journal of Human Genetics | 2005

Discriminating power of localized three-dimensional facial morphology

Peter Hammond; Tim J. Hutton; Judith Allanson; Bernard F. Buxton; Linda E. Campbell; Jill Clayton-Smith; Dian Donnai; Annette Karmiloff-Smith; Kay Metcalfe; Kieran C. Murphy; Michael A. Patton; Barbara R. Pober; Katrina Prescott; Peter J. Scambler; Adam Shaw; A. M. Smith; A F Stevens; I. Karen Temple; Raoul C. M. Hennekam; May Tassabehji

Many genetic syndromes involve a facial gestalt that suggests a preliminary diagnosis to an experienced clinical geneticist even before a clinical examination and genotyping are undertaken. Previously, using visualization and pattern recognition, we showed that dense surface models (DSMs) of full face shape characterize facial dysmorphology in Noonan and in 22q11 deletion syndromes. In this much larger study of 696 individuals, we extend the use of DSMs of the full face to establish accurate discrimination between controls and individuals with Williams, Smith-Magenis, 22q11 deletion, or Noonan syndromes and between individuals with different syndromes in these groups. However, the full power of the DSM approach is demonstrated by the comparable discriminating abilities of localized facial features, such as periorbital, perinasal, and perioral patches, and the correlation of DSM-based predictions and molecular findings. This study demonstrates the potential of face shape models to assist clinical training through visualization, to support clinical diagnosis of affected individuals through pattern recognition, and to enable the objective comparison of individuals sharing other phenotypic or genotypic properties.


Nature Genetics | 2008

Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin

Hans Christian Hennies; Uwe Kornak; Haikuo Zhang; Johannes Egerer; Xin Zhang; Wenke Seifert; Jirko Kühnisch; Birgit Budde; Marc Nätebus; Francesco Brancati; William R. Wilcox; Dietmar Müller; Anna Rajab; Giuseppe Zampino; Valentina Fodale; Bruno Dallapiccola; William G. Newman; Kay Metcalfe; Jill Clayton-Smith; May Tassabehji; Beat Steinmann; Francis A. Barr; Peter Nürnberg; Peter Wieacker; Stefan Mundlos

Gerodermia osteodysplastica is an autosomal recessive disorder characterized by wrinkly skin and osteoporosis. Here we demonstrate that gerodermia osteodysplastica is caused by loss-of-function mutations in SCYL1BP1, which is highly expressed in skin and osteoblasts. The protein localizes to the Golgi apparatus and interacts with Rab6, identifying SCYL1BP1 as a golgin. These results associate abnormalities of the secretory pathway with age-related changes in connective tissues.


Archives of Disease in Childhood | 2011

Autism, language and communication in children with sex chromosome trisomies

Dorothy V. M. Bishop; Patricia A. Jacobs; Katherine Lachlan; Diana Wellesley; Angela Barnicoat; Patricia A. Boyd; Alan Fryer; Prisca Middlemiss; Sarah F. Smithson; Kay Metcalfe; Deborah J. Shears; Victoria Leggett; Kate Nation; Gaia Scerif

Purpose Sex chromosome trisomies (SCTs) are found on amniocentesis in 2.3–3.7 per 1000 same-sex births, yet there is a limited database on which to base a prognosis. Autism has been described in postnatally diagnosed cases of Klinefelter syndrome (XXY karyotype), but the prevalence in non-referred samples, and in other trisomies, is unclear. The authors recruited the largest sample including all three SCTs to be reported to date, including children identified on prenatal screening, to clarify this issue. Design Parents of children with a SCT were recruited either via prenatal screening or via a parental support group, to give a sample of 58 XXX, 19 XXY and 58 XYY cases. Parents were interviewed using the Vineland Adaptive Behavior Scales and completed questionnaires about the communicative development of children with SCTs and their siblings (42 brothers and 26 sisters). Results Rates of language and communication problems were high in all three trisomies. Diagnoses of autism spectrum disorder (ASD) were found in 2/19 cases of XXY (11%) and 11/58 XYY (19%). After excluding those with an ASD diagnosis, communicative profiles indicative of mild autistic features were common, although there was wide individual variation. Conclusions Autistic features have not previously been remarked upon in studies of non-referred samples with SCTs, yet the rate is substantially above population levels in this sample, even when attention is restricted to early-identified cases. The authors hypothesise that X-linked and Y-linked neuroligins may play a significant role in the aetiology of communication impairments and ASD.


European Journal of Human Genetics | 2012

How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum

Siddharth Banka; Ratna Veeramachaneni; William Reardon; Emma Howard; Sancha Bunstone; Nicola Ragge; Michael J. Parker; Yanick J. Crow; Bronwyn Kerr; Helen Kingston; Kay Metcalfe; Kate Chandler; Alex Magee; Fiona Stewart; Vivienne McConnell; Deirdre E. Donnelly; Siren Berland; Gunnar Houge; Jenny Morton; Christine Oley; Nicole Revencu; Soo Mi Park; Sally Davies; Andrew E. Fry; Sally Ann Lynch; Harinder Gill; Susann Schweiger; Wayne W K Lam; John Tolmie; Shehla Mohammed

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients.


Journal of Medical Genetics | 2003

Using case study comparisons to explore genotype-phenotype correlations in Williams-Beuren syndrome

Annette Karmiloff-Smith; Julia Grant; Sandra Ewing; Martin Carette; Kay Metcalfe; Dian Donnai; Andrew P. Read; Mayada Tassabehji

Williams-Beuren syndrome (WBS, MIM 194050) is a rare condition, with striking physical and behavioural features,1–3 which occurs in 1/20 000-1/50 000 live births. Cases are generally sporadic; however, familial cases with an autosomal dominant mode of inheritance have been reported. It results in a complex phenotype with physical, cognitive, and behavioural aspects that include an uneven cognitive profile (WBSCP), with verbal tasks outstripping spatial tasks, and overall IQs in the 50-60 range. Physically, WBS phenotypes include a dysmorphic face, congenital heart disease (typically supravalvular aortic stenosis (SVAS)), growth retardation, hyperacusis, premature ageing, and often infantile hypercalcaemia. These features are caused by deletion of the Williams-Beuren syndrome critical region (WBSCR) at chromosomal position 7q11.23 on either the maternal or paternal chromosome 7. The deletion is thought to arise from recombination between misaligned repeat sequences flanking the WBSCR during meiosis. The breakpoints cluster within these repeat regions, so that most WBS patients have similar deletions of approximately 1.5 Mb. A few WBS patients have, however, been reported with smaller deletions (<1 Mb).3,4 Patients with partial deletions of the WBSCR (that include the elastin gene) and SVAS as the only resulting phenotype have also been described.5 No credible cases of WBS without the deletion have so far been reported, suggesting that haploinsufficiency for a single gene will not explain the phenotype. Nineteen genes have so far been described in the WBSCR, yet only elastin hemizygosity has been confidently associated with any aspect of the WBS phenotype, namely SVAS, hernias, and possibly premature ageing. It would therefore appear that, alone or in combination, some of the remaining genes in the deleted region are responsible for the other features of WBS. Relations between genotype and phenotype in WBS are mainly studied at the group level with rather gross measures of …


European Journal of Medical Genetics | 2010

Interstitial microduplication of Xp22.31: Causative of intellectual disability or benign copy number variant?

Feng Li; Yiping Shen; Udo Köhler; Freddie H. Sharkey; Deepa Menon; Laurence Coulleaux; Valérie Malan; Marlène Rio; Dominic J. McMullan; Helen Cox; Kerry A. Fagan; Lorraine Gaunt; Kay Metcalfe; Uwe Heinrich; Gordon Hislop; Una Maye; Maxine Sutcliffe; Bai-Lin Wu; Brian D. Thiel; Surabhi Mulchandani; Laura K. Conlin; Nancy B. Spinner; Kathleen M. Murphy; Denise Batista

The use of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays has dramatically altered the approach to identification of genetic alterations that can explain intellectual disability and /or congenital anomalies. However, the discovery of numerous copy number changes with benign or unknown clinical significance has made interpretation problematic. Submicroscopic duplication of Xp22.31 has been reported as either a possible cause of intellectual disability and/or developmental delay or a benign variant. Here we report 29 individuals with the microduplication found as part of microarray analysis of 7793 samples submitted to an international group of 13 clinical laboratories. The referral reasons varied and included developmental delay, intellectual disability, autism, dysmorphic features and/or multiple congenital anomalies. The size of the Xp22.31 duplication varied between 149 kb and 1.74 Mb and included the steroid sulfatase (STS) gene with the male to female ratio of 0.7. Duplication within this segment is seen at a frequency of 0.15% in a healthy control population, whereas a frequency of 0.37% was observed in our cohort of individuals with abnormal phenotypes. We present a detailed comparison of the breakpoints, inheritance, X-inactivation and clinical phenotype in our cohort and a review of the literature for a total of 41 patients. To date, this report is the largest compilation of clinical and array data regarding the microduplication of Xp22.31 and will serve to broaden the knowledge of regions involving copy number variation (CNV).


European Journal of Human Genetics | 2004

Isolation and characterisation of GTF2IRD2, a novel fusion gene and member of the TFII-I family of transcription factors, deleted in Williams-Beuren syndrome.

Hannah Tipney; Timothy A. Hinsley; Andy Brass; Kay Metcalfe; Dian Donnai; May Tassabehji

Williams–Beuren syndrome (WBS) is a developmental disorder with characteristic physical, cognitive and behavioural traits caused by a microdeletion of ∼1.5 Mb on chromosome 7q11.23. In total, 24 genes have been described within the deleted region to date. We have isolated and characterised a novel human gene, GTF2IRD2, mapping to the WBS critical region thought to harbour genes important for the cognitive aspects of the disorder. GTF2IRD2 is the third member of the novel TFII-I family of genes clustered on 7q11.23. The GTF2IRD2 protein contains two putative helix-loop-helix regions (I-repeats) and an unusual C-terminal CHARLIE8 transposon-like domain, thought to have arisen as a consequence of the random insertion of a transposable element generating a functional fusion gene. The retention of a number of conserved transposase-associated motifs within the protein suggests that the CHARLIE8-like region may still have some degree of transposase functionality that could influence the stability of the region in a mechanism similar to that proposed for Charcot–Marie–Tooth neuropathy type 1A. GTF2IRD2 is highly conserved in mammals and the mouse ortholgue (Gtf2ird2) has also been isolated and maps to the syntenic WBS region on mouse chromosome 5G. Deletion mapping studies using somatic cell hybrids show that some WBS patients are hemizygous for this gene, suggesting that it could play a role in the pathogenesis of the disorder.


Human Mutation | 2011

Functional assessment of variants in the TSC1 and TSC2 genes identified in individuals with Tuberous Sclerosis Complex.

Marianne Hoogeveen-Westerveld; Marjolein Wentink; Diana van den Heuvel; Melika Mozaffari; Rosemary Ekong; Sue Povey; Johan T. den Dunnen; Kay Metcalfe; Stephanie E. Vallee; Stefan Krueger; JoAnn Bergoffen; Vandana Shashi; Frances Elmslie; David J. Kwiatkowski; Julian Roy Sampson; Concha Vidales; Jacinta Dzarir; Javier Garcı́a-Planells; Kira A. Dies; Anneke Maat-Kievit; Ans van den Ouweland; Dicky Halley; Mark Nellist

The effects of missense changes and small in‐frame deletions and insertions on protein function are not easy to predict, and the identification of such variants in individuals at risk of a genetic disease can complicate genetic counselling. One option is to perform functional tests to assess whether the variants affect protein function. We have used this strategy to characterize variants identified in the TSC1 and TSC2 genes in individuals with, or suspected of having, Tuberous Sclerosis Complex (TSC). Here we present an overview of our functional studies on 45 TSC1 and 107 TSC2 variants. Using a standardized protocol we classified 16 TSC1 variants and 70 TSC2 variants as pathogenic. In addition we identified eight putative splice site mutations (five TSC1 and three TSC2). The remaining 24 TSC1 and 34 TSC2 variants were classified as probably neutral. Hum Mutat 32:1–12, 2011.

Collaboration


Dive into the Kay Metcalfe's collaboration.

Top Co-Authors

Avatar

Dian Donnai

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bronwyn Kerr

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Bruno Dallapiccola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

May Tassabehji

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S Gardner

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Koenraad Devriendt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nicole Philip

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge