May Tassabehji
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by May Tassabehji.
The New England Journal of Medicine | 2008
Mefford Hc; Andrew J. Sharp; Carl Baker; Andy Itsara; Zhaoshi Jiang; Karen Buysse; Shuwen Huang; Viv Maloney; John A. Crolla; Diana Baralle; Amanda L. Collins; Catherine L. Mercer; Koenraad K. Norga; Thomy de Ravel; Koenraad Devriendt; Ernie M.H.F. Bongers; Nicole de Leeuw; William Reardon; Stefania Gimelli; Frédérique Béna; Raoul C. M. Hennekam; Alison Male; Lorraine Gaunt; Jill Clayton-Smith; Ingrid Simonic; Soo Mi Park; Sarju G. Mehta; Serena Nik-Zainal; C. Geoffrey Woods; Helen V. Firth
BACKGROUND Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1x10(-7)). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype.
Nature Genetics | 1993
May Tassabehji; Andrew P. Read; Valerie Newton; Michael A. Patton; Peter Gruss; Rodney Harris; Tom Strachan
Waardenburg syndrome (WS) is a combination of deafness and pigmentary disturbances, normally inherited as an autosomal dominant trait. The pathology involves neural crest derivatives, but WS is heterogeneous clinically and genetically. Some type I WS families show linkage with markers on distal 2q and in three cases the disease has been attributed to mutations in the PAX3 gene. PAX3 encodes a paired domain, a highly conserved octapeptide and probably also a paired–type homeodomain. Here we describe a further three PAX3 mutations which cause WS; one alters the octapeptide motif plus the presumed homeodomain; a second alters all three elements and the third alters the paired box alone. The latter occurs in a family with probable type 2 WS, a clinical variant usually considered not to be allelic with type 1 WS.
Science | 2005
May Tassabehji; Peter Hammond; Annette Karmiloff-Smith; Pamela Thompson; Snorri S. Thorgeirsson; Marian E. Durkin; Nicholas C. Popescu; Timothy Hutton; Kay Metcalfe; Agnes Rucka; Helen Stewart; Andrew P. Read; Mark Maconochie; Dian Donnai
Craniofacial abnormalities account for about one-third of all human congenital defects, but our understanding of the genetic mechanisms governing craniofacial development is incomplete. We show that GTF2IRD1 is a genetic determinant of mammalian craniofacial and cognitive development, and we implicate another member of the TFII-I transcription factor family, GTF2I, in both aspects. Gtf2ird1-null mice exhibit phenotypic abnormalities reminiscent of the human microdeletion disorder Williams-Beuren syndrome (WBS); craniofacial imaging reveals abnormalities in both skull and jaws that may arise through misregulation of goosecoid, a downstream target of Gtf2ird1. In humans, a rare WBS individual with an atypical deletion, including GTF2IRD1, shows facial dysmorphism and cognitive deficits that differ from those of classic WBS cases. We propose a mechanism of cumulative dosage effects of duplicated and diverged genes applicable to other human chromosomal disorders.
American Journal of Human Genetics | 2005
Peter Hammond; Tim J. Hutton; Judith Allanson; Bernard F. Buxton; Linda E. Campbell; Jill Clayton-Smith; Dian Donnai; Annette Karmiloff-Smith; Kay Metcalfe; Kieran C. Murphy; Michael A. Patton; Barbara R. Pober; Katrina Prescott; Peter J. Scambler; Adam Shaw; A. M. Smith; A F Stevens; I. Karen Temple; Raoul C. M. Hennekam; May Tassabehji
Many genetic syndromes involve a facial gestalt that suggests a preliminary diagnosis to an experienced clinical geneticist even before a clinical examination and genotyping are undertaken. Previously, using visualization and pattern recognition, we showed that dense surface models (DSMs) of full face shape characterize facial dysmorphology in Noonan and in 22q11 deletion syndromes. In this much larger study of 696 individuals, we extend the use of DSMs of the full face to establish accurate discrimination between controls and individuals with Williams, Smith-Magenis, 22q11 deletion, or Noonan syndromes and between individuals with different syndromes in these groups. However, the full power of the DSM approach is demonstrated by the comparable discriminating abilities of localized facial features, such as periorbital, perinasal, and perioral patches, and the correlation of DSM-based predictions and molecular findings. This study demonstrates the potential of face shape models to assist clinical training through visualization, to support clinical diagnosis of affected individuals through pattern recognition, and to enable the objective comparison of individuals sharing other phenotypic or genotypic properties.
Human Mutation | 2008
May Tassabehji; Zhi Ming Fang; Emma Hilton; Julie McGaughran; Zhongming Zhao; Charles E. de Bock; Emma Howard; Michael Malass; Dian Donnai; Ashish D. Diwan; Forbes D.C. Manson; Dédée F. Murrell; Raymond A. Clarke
Klippel‐Feil syndrome (KFS) is a congenital disorder of spinal segmentation distinguished by the bony fusion of anterior/cervical vertebrae. Scoliosis, mirror movements, otolaryngological, kidney, ocular, cranial, limb, and/or digit anomalies are often associated. Here we report mutations at the GDF6 gene locus in familial and sporadic cases of KFS including the recurrent missense mutation of an extremely conserved residue c.866T>C (p.Leu289Pro) in association with mirror movements and an inversion breakpoint downstream of the gene in association with carpal, tarsal, and vertebral fusions. GDF6 is expressed at the boundaries of the developing carpals, tarsals, and vertebrae and within the adult vertebral disc. GDF6 knockout mice are best distinguished by fusion of carpals and tarsals and GDF6 knockdown in Xenopus results in a high incidence of anterior axial defects consistent with a role for GDF6 in the etiology, diversity, and variability of KFS. Hum Mutat 0,1–11, 2008.
American Journal of Human Genetics | 2011
Jill Clayton-Smith; James O'Sullivan; Sarah B. Daly; Sanjeev Bhaskar; Ruth Day; Beverley Anderson; Anne K. Voss; Tim Thomas; Leslie G. Biesecker; Philip Smith; Alan Fryer; Kate Chandler; Bronwyn Kerr; May Tassabehji; Sally Ann Lynch; Małgorzata Krajewska-Walasek; Shane McKee; Janine Smith; Elizabeth Sweeney; Sahar Mansour; Shehla Mohammed; Dian Donnai; Graeme C.M. Black
Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS or Ohdo syndrome) is a multiple anomaly syndrome characterized by severe intellectual disability, blepharophimosis, and a mask-like facial appearance. A number of individuals with SBBYSS also have thyroid abnormalities and cleft palate. The condition usually occurs sporadically and is therefore presumed to be due in most cases to new dominant mutations. In individuals with SBBYSS, a whole-exome sequencing approach was used to demonstrate de novo protein-truncating mutations in the highly conserved histone acetyltransferase gene KAT6B (MYST4/MORF)) in three out of four individuals sequenced. Sanger sequencing was used to confirm truncating mutations of KAT6B, clustering in the final exon of the gene in all four individuals and in a further nine persons with typical SBBYSS. Where parental samples were available, the mutations were shown to have occurred de novo. During mammalian development KAT6B is upregulated specifically in the developing central nervous system, facial structures, and limb buds. The phenotypic features seen in the Qkf mouse, a hypomorphic Kat6b mutant, include small eyes, ventrally placed ears and long first digits that mirror the human phenotype. This is a further example of how perturbation of a protein involved in chromatin modification might give rise to a multisystem developmental disorder.
Nature Genetics | 2008
Hans Christian Hennies; Uwe Kornak; Haikuo Zhang; Johannes Egerer; Xin Zhang; Wenke Seifert; Jirko Kühnisch; Birgit Budde; Marc Nätebus; Francesco Brancati; William R. Wilcox; Dietmar Müller; Anna Rajab; Giuseppe Zampino; Valentina Fodale; Bruno Dallapiccola; William G. Newman; Kay Metcalfe; Jill Clayton-Smith; May Tassabehji; Beat Steinmann; Francis A. Barr; Peter Nürnberg; Peter Wieacker; Stefan Mundlos
Gerodermia osteodysplastica is an autosomal recessive disorder characterized by wrinkly skin and osteoporosis. Here we demonstrate that gerodermia osteodysplastica is caused by loss-of-function mutations in SCYL1BP1, which is highly expressed in skin and osteoblasts. The protein localizes to the Golgi apparatus and interacts with Rab6, identifying SCYL1BP1 as a golgin. These results associate abnormalities of the secretory pathway with age-related changes in connective tissues.
American Journal of Human Genetics | 2008
Christian R. Marshall; Edwin J. Young; Ariel M. Pani; Mary Louise Freckmann; Yves Lacassie; Cédric Howald; Kristi K. Fitzgerald; Maarit Peippo; Colleen A. Morris; Kate Shane; Manuela Priolo; Masafumi Morimoto; Ikuko Kondo; Esra Manguoğlu; Sibel Berker-Karauzum; Patrick Edery; Holly H. Hobart; Carolyn B. Mervis; Orsetta Zuffardi; Alexandre Reymond; Paige Kaplan; May Tassabehji; Ronald G. Gregg; Stephen W. Scherer; Lucy R. Osborne
Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.
Human Mutation | 2013
Gijs W.E. Santen; Emmelien Aten; Anneke T. Vulto-van Silfhout; Caroline Pottinger; Bregje W.M. Bon; Ivonne J.H.M. Minderhout; Ronelle Snowdowne; Christian A.C. Lans; Merel W. Boogaard; Margot M.L. Linssen; Linda Vijfhuizen; Michiel J.R. Wielen; M.J. (Ellen) Vollebregt; Martijn H. Breuning; Marjolein Kriek; Arie van Haeringen; Johan T. den Dunnen; Alexander Hoischen; Jill Clayton-Smith; Bert B.A. Vries; Raoul C. M. Hennekam; Martine J. van Belzen; Mariam Almureikhi; Anwar Baban; Mafalda Barbosa; Tawfeg Ben-Omran; Katherine Berry; Stefania Bigoni; Odile Boute; Louise Brueton
De novo germline variants in several components of the SWI/SNF‐like BAF complex can cause Coffin–Siris syndrome (CSS), Nicolaides–Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD‐powered databases to facilitate further genotype–phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype–genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation.
European Journal of Human Genetics | 2003
Julie McGaughran; A Oates; Dian Donnai; Andrew P. Read; May Tassabehji
Pax genes are a highly conserved family of developmental control genes that encode transcription factors. In vertebrates, Pax genes play a role in pattern formation during embryogenesis. Mutations in Pax genes have been associated with both spontaneous mouse mutants and congenital human diseases. The mouse Pax1 mutant phenotype undulated is characterised by vertebral segmentation defects reminiscent of the human disorder Klippel-Feil syndrome (KFS). To determine whether PAX1 haploinsufficiency plays a role in KFS, we have defined the gene structure of the human PAX1 gene and screened 63 KFS patients for mutations in this gene. Differences in the PAX1 sequence were detected in eight patients. Two patients had a silent change within the paired box that was also seen in 2/303 control chromosomes. The other variants were missense, silent or intronic changes not represented in the control panel tested. The significance of these results and the possible role of PAX1 in the pathogenesis of KFS are discussed.