Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kay Raum is active.

Publication


Featured researches published by Kay Raum.


Journal of Bone and Mineral Research | 2015

Canalicular Network Morphology Is the Major Determinant of the Spatial Distribution of Mass Density in Human Bone Tissue: Evidence by Means of Synchrotron Radiation Phase-Contrast nano-CT

Bernhard Hesse; Peter Varga; Max Langer; Alexandra Pacureanu; Susanne Schrof; Nils Männicke; Heikki Suhonen; P. Maurer; Peter Cloetens; Françoise Peyrin; Kay Raum

In bone remodeling, maturation of the newly formed osteonal tissue is associated with a rapid primary increase followed by a slower secondary increase of mineralization. This requires supply and precipitation of mineral into the bone matrix. Mineral delivery can occur only from the extracellular fluid via interfaces such as the Haversian system and the osteocyte pore network. We hypothesized that in mineralization, mineral exchange is achieved by the diffusion of mineral from the lacunar‐canalicular network (LCN) to the bone matrix, resulting in a gradual change in tissue mineralization with respect to the distance from the pore‐matrix interface. We expected to observe alterations in the mass density distribution with tissue age. We further hypothesized that mineral exchange occurs not only at the lacunar but also at the canalicular boundaries. The aim of this study was, therefore, to investigate the spatial distribution of mass density in the perilacunar and pericanalicular bone matrix and to explore how these densities are influenced by tissue aging. This is achieved by analyzing human jawbone specimens originating from four healthy donors and four treated with high‐dosage bisphosphonate using synchrotron radiation phase‐contrast nano‐CT with a 50‐nm voxel size. Our results provide the first experimental evidence that mass density in the direct vicinity of both lacunae (p < 0.001) and canaliculi (p < 0.001) is different from the mean matrix mass density, resulting in gradients with respect to the distance from both pore‐matrix interfaces, which diminish with increasing tissue age. Though limited by the sample size, these findings support our hypotheses. Moreover, the density gradients are more pronounced around the lacunae than around the canaliculi, which are explained by geometrical considerations in the LCN morphology. In addition, we speculate that mineral exchange occurs at all interfaces of the LCN, not only in mineralization but also in mineral homeostasis.


Bone | 2013

Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur

Markus K. H. Malo; Daniel Rohrbach; Hanna Isaksson; Juha Töyräs; Jukka S. Jurvelin; Inari S. Tamminen; Heikki Kröger; Kay Raum

Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, p<0.05). Regional variations in porosity were found in the neck (superior 13.1%; inferior 6.1%; anterior 10.1%; posterior 8.6%) and in the shaft (medial 9.5%; lateral 7.7%; anterior 8.6%; posterior 12.0%). In conclusion, significant variations in elastic coefficients were detected between femoral neck and shaft as well as between the quadrants of the cross-sections of neck and shaft. Moreover, an age-related increase in cortical porosity and a stiffening of the bone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics.


Acta Biomaterialia | 2013

Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography.

Peter Varga; Alexandra Pacureanu; Max Langer; Heikki Suhonen; Bernhard Hesse; Quentin Grimal; Peter Cloetens; Kay Raum; Françoise Peyrin

We investigate the three-dimensional (3-D) organization of mineralized collagen fibrils in human cortical bone based on synchrotron X-ray phase nano-tomography images. In lamellar bone the collagen fibrils are assumed to have a plywood-like arrangement, but due to experimental limitations the 3-D fibril structure has only been deduced from section surfaces so far and the findings have been controversial. Breakthroughs in synchrotron tomographic imaging have given access to direct 3-D information on the bone structure at the nanoscale level. Using an autocorrelation-based orientation measure we confirm that the fibrils are unidirectional in quasi-planes of sub-lamellae and find two specific dominant patterns, oscillating and twisted plywoods coexisting in a single osteon. Both patterns exhibit smooth orientation changes between adjacent quasi-planes. Moreover, we find that the periodic changes in collagen fibril orientation are independent of fluctuations in local mass density. These data improve our understanding of the lamellar arrangement in bone and allow more detailed investigations of structure-function relationships at this scale, providing templates for bio-inspired materials. The presented methodology can be applied to non-destructive 3-D characterization of the sub-micron scale structure of other natural and artificial mineralized biomaterials.


PLOS ONE | 2013

Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale

Mathilde Granke; Aurélien Gourrier; Fabienne Rupin; Kay Raum; Françoise Peyrin; Manfred Burghammer; Amena Saïed; Pascal Laugier

The elastic properties of bone tissue determine the biomechanical behavior of bone at the organ level. It is now widely accepted that the nanoscale structure of bone plays an important role to determine the elastic properties at the tissue level. Hence, in addition to the mineral density, the structure and organization of the mineral nanoparticles and of the collagen microfibrils appear as potential key factors governing the elasticity. Many studies exist on the role of the organization of collagen microfibril and mineral nanocrystals in strongly remodeled bone. However, there is no direct experimental proof to support the theoretical calculations. Here, we provide such evidence through a novel approach combining several high resolution imaging techniques: scanning acoustic microscopy, quantitative scanning small-Angle X-ray scattering imaging and synchrotron radiation computed microtomography. We find that the periodic modulations of elasticity across osteonal bone are essentially determined by the orientation of the mineral nanoparticles and to a lesser extent only by the particle size and density. Based on the strong correlation between the orientation of the mineral nanoparticles and the collagen molecules, we conclude that the microfibril orientation is the main determinant of the observed undulations of microelastic properties in regions of constant mineralization in osteonal lamellar bone. This multimodal approach could be applied to a much broader range of fibrous biological materials for the purpose of biomimetic technologies.


Ultrasound in Medicine and Biology | 2011

Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy.

Bernd Preininger; Sara Checa; Ferenc Molnár; Peter Fratzl; Georg N. Duda; Kay Raum

The course of bone healing in animal models is conventionally monitored by morphologic approaches, which do not allow the determination of the material properties of the tissues involved. Mechanical characterization techniques are either dedicated to the macroscopic evaluation of the entire organ or to the microscopic evaluation of the tissue matrix. The latter provides insight to regionally specific alterations at the tissue level in the course of healing. In this study, quantitative scanning acoustic microscopy was used at 50 MHz to investigate microstructural and elastic alterations of mineralized callus and cortical tissue after transverse osteotomy in sheep tibiae. Analyses were performed after 2, 3, 6 and 9 weeks of consolidation with stabilization by either a rigid or a semi-rigid external fixator. Increased stiffness and decreased porosity were observed in the callus tissue over the course of the healing process, which was dependent on the fixator type. In the adjacent cortical tissue, stiffness decreased during the first 3 weeks. Cortical porosity increased over time but the time-dependence was different between the two fixator types. The changes of stiffness of cortical and callus tissues were measured with respect to the distance to the periosteal cortex-callus boundary. Stiffness of cortex and callus tissue smoothly decreased as a function of the distance from the inner cortical region. The data obtained in this study can help to understand the processes involved in tissue maturation during endogenous bone healing.


Journal of Biomechanics | 2012

Spatial distribution of tissue level properties in a human femoral cortical bone.

Daniel Rohrbach; Sannachi Lakshmanan; Françoise Peyrin; Max Langer; Alf Gerisch; Quentin Grimal; Pascal Laugier; Kay Raum

The mechanical properties of cortical bone are determined by a combination bone tissue composition, and structure at several hierarchical length scales. In this study the spatial distribution of tissue level properties within a human femoral shaft has been investigated. Cylindrically shaped samples (diameter: 4.4mm, N=56) were prepared from cortical regions along the entire length (20-85% of the total femur length), and around the periphery (anterior, medial, posterior and lateral quadrants). The samples were analyzed using scanning acoustic microscopy (SAM) at 50MHz and synchrotron radiation micro computed tomography (SRμCT). For all samples the average cortical porosity (Ct.Po), tissue elastic coefficients (c(ij)) and the average tissue degree of mineralization (DMB) were determined. The smallest coefficient of variation was observed for DMB (1.8%), followed by BV/TV (5.4%), c(ij) (8.2-45.5%), and Ct.Po (47.5%). Different variations with respect to the anatomical position were found for DMB, Ct.Po and c(ij). These data address the anatomical variations in anisotropic elastic properties and link them to tissue mineralization and porosity, which are important input parameters for numerical multi-scale bone models.


Current Osteoporosis Reports | 2014

Ultrasound to Assess Bone Quality

Kay Raum; Quentin Grimal; P. Varga; Reinhard Barkmann; Claus C. Glüer; Pascal Laugier

Bone quality is determined by a variety of compositional, micro- and ultrastructural properties of the mineralized tissue matrix. In contrast to X-ray-based methods, the interaction of acoustic waves with bone tissue carries information about elastic and structural properties of the tissue. Quantitative ultrasound (QUS) methods represent powerful alternatives to ionizing x-ray based assessment of fracture risk. New in vivo applicable methods permit measurements of fracture-relevant properties, [eg, cortical thickness and stiffness at fragile anatomic regions (eg, the distal radius and the proximal femur)]. Experimentally, resonance ultrasound spectroscopy and acoustic microscopy can be used to assess the mesoscale stiffness tensor and elastic maps of the tissue matrix at microscale resolution, respectively. QUS methods, thus, currently represent the most promising approach for noninvasive assessment of components of fragility beyond bone mass and bone microstructure providing prospects for improved assessment of fracture risk.


Journal of Structural Biology | 2014

3D Raman mapping of the collagen fibril orientation in human osteonal lamellae

Susanne Schrof; Peter Varga; Leonardo Galvis; Kay Raum; Admir Masic

Chemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues.


Biomechanics and Modeling in Mechanobiology | 2015

Synchrotron X-ray phase nano-tomography-based analysis of the lacunar–canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis

Peter Varga; Bernhard Hesse; Max Langer; Susanne Schrof; Nils Männicke; Heikki Suhonen; Alexandra Pacureanu; Dieter H. Pahr; Françoise Peyrin; Kay Raum

Osteocytes are hypothesized to regulate bone remodeling guided by both biological and mechanical stimuli. Morphology of the lacunar–canalicular network of osteocytes has been hypothesized to be strongly related to the level of mechanical loading and to various bone diseases. Finite element modeling could help to better understand the mechanosensation process by predicting the physiological strain environment. The aims of this study were to (i) quantify the lacunar–canalicular morphology in the cortex of the human femur; (ii) predict the in situ local deformations around and in osteocytes by means of case-specific finite element models; and (iii) investigate the potential relationship between morphology and deformations. Human femoral cortical bone samples were imaged using synchrotron X-ray phase nano-tomography with 50 nm voxel size. Rectangular volumes of interest were selected to contain single osteocyte lacunae and the surrounding matrix. Lacunar–canalicular morphology was quantified and the cell geometry was artificially reconstructed based on a priori assumptions. Finite element models of the volumes of interest were generated, containing the extracellular matrix, osteocyte and peri-cellular matrix, and subjected to uniaxial compression. The morphological analysis revealed that canalicular number was dictated by lacunar size, that the spacing of canaliculi fell within a narrow range, suggesting that these pores are well distributed throughout the bone matrix and indicated the trend that lacunae at the outer osteon boundary were less elongated than others. No apparent relationship was found between the morphological parameters and the predicted strains. The globally applied strain was amplified locally by factors up to 10 and up to 70 in the extracellular matrix and the in cells, respectively. Cell deformations were localized mainly at the body–dendrite junctions, with magnitudes reaching the in vitro stimulatory threshold reported for osteocytes.


Ultrasonics | 2014

Application of an effective medium theory for modeling ultrasound wave propagation in healing long bones.

Vassiliki T. Potsika; Konstantinos N. Grivas; Vasilios C. Protopappas; Maria G. Vavva; Kay Raum; Daniel Rohrbach; Demosthenes Polyzos; Dimitrios I. Fotiadis

Quantitative ultrasound has recently drawn significant interest in the monitoring of the bone healing process. Several research groups have studied ultrasound propagation in healing bones numerically, assuming callus to be a homogeneous and isotropic medium, thus neglecting the multiple scattering phenomena that occur due to the porous nature of callus. In this study, we model ultrasound wave propagation in healing long bones using an iterative effective medium approximation (IEMA), which has been shown to be significantly accurate for highly concentrated elastic mixtures. First, the effectiveness of IEMA in bone characterization is examined: (a) by comparing the theoretical phase velocities with experimental measurements in cancellous bone mimicking phantoms, and (b) by simulating wave propagation in complex healing bone geometries by using IEMA. The original material properties of cortical bone and callus were derived using serial scanning acoustic microscopy (SAM) images from previous animal studies. Guided wave analysis is performed for different healing stages and the results clearly indicate that IEMA predictions could provide supplementary information for bone assessment during the healing process. This methodology could potentially be applied in numerical studies dealing with wave propagation in composite media such as healing or osteoporotic bones in order to reduce the simulation time and simplify the study of complicated geometries with a significant porous nature.

Collaboration


Dive into the Kay Raum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Hesse

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alf Gerisch

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge