Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaya Mori is active.

Publication


Featured researches published by Kaya Mori.


The Astrophysical Journal | 2013

The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission

Fiona A. Harrison; William W. Craig; Finn Erland Christensen; Charles J. Hailey; William W. Zhang; Steven E. Boggs; Daniel Stern; W. Rick Cook; Karl Forster; Paolo Giommi; Brian W. Grefenstette; Yunjin Kim; Takao Kitaguchi; Jason E. Koglin; Kristin K. Madsen; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff; S. Puccetti; V. Rana; Niels Jørgen Stenfeldt Westergaard; Jason Willis; Andreas Zoglauer; Hongjun An; Matteo Bachetti; Eric C. Bellm; Varun Bhalerao; Nicolai F. Brejnholt

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a National Aeronautics and Space Administration (NASA) Small Explorer mission that carried the first focusing hard X-ray (6-79 keV) telescope into orbit. It was launched on a Pegasus rocket into a low-inclination Earth orbit on June 13, 2012, from Reagan Test Site, Kwajalein Atoll. NuSTAR will carry out a two-year primary science mission. The NuSTAR observatory is composed of the X-ray instrument and the spacecraft. The NuSTAR spacecraft is three-axis stabilized with a single articulating solar array based on Orbital Sciences Corporations LEOStar-2 design. The NuSTAR science instrument consists of two co-aligned grazing incidence optics focusing on to two shielded solid state CdZnTe pixel detectors. The instrument was launched in a compact, stowed configuration, and after launch, a 10-meter mast was deployed to achieve a focal length of 10.15 m. The NuSTAR instrument provides sub-arcminute imaging with excellent spectral resolution over a 12-arcminute field of view. The NuSTAR observatory will be operated out of the Mission Operations Center (MOC) at UC Berkeley. Most science targets will be viewed for a week or more. The science data will be transferred from the UC Berkeley MOC to a Science Operations Center (SOC) located at the California Institute of Technology (Caltech). In this paper, we will describe the mission architecture, the technical challenges during the development phase, and the post-launch activities.


Nature | 2014

Asymmetries in core-collapse supernovae from maps of radioactive 44 Ti in Cassiopeia A

Brian W. Grefenstette; Fiona A. Harrison; S. E. Boggs; Stephen P. Reynolds; Christopher L. Fryer; K. K. Madsen; Daniel R. Wik; Andreas Zoglauer; C I Ellinger; D. M. Alexander; Hongjun An; Didier Barret; Finn Erland Christensen; William W. Craig; K. Forster; P. Giommi; C. J. Hailey; A. Hornstrup; V. M. Kaspi; Takao Kitaguchi; Jason E. Koglin; Peter H. Mao; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; M. Pivovaroff; S. Puccetti; V. Rana; D. Stern; Niels Jørgen Stenfeldt Westergaard

Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive 44Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which 44Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed 44Ti emission to estimated 56Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the 44Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the 44Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.


The Astrophysical Journal | 2013

NuSTAR DISCOVERY OF A 3.76 s TRANSIENT MAGNETAR NEAR SAGITTARIUS A

Kaya Mori; E. V. Gotthelf; Shuo Zhang; Hongjun An; F. K. Baganoff; Andrei M. Beloborodov; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Francois Dufour; Brian W. Grefenstette; Charles J. Hailey; Fiona A. Harrison; JaeSub Hong; Victoria M. Kaspi; J. A. Kennea; Kristin K. Madsen; Craig B. Markwardt; Melania Nynka; Daniel Stern; John A. Tomsick; William W. Zhang

We report the discovery of 3.76 s pulsations from a new burst source near Sgr A^* observed by the NuSTAR observatory. The strong signal from SGR J1745–29 presents a complex pulse profile modulated with pulsed fraction 27% ± 3% in the 3-10 keV band. Two observations spaced nine days apart yield a spin-down rate of Ṗ =(6.5 ± 1.4) × 10^(–12). This implies a magnetic field B = 1.6 × 10^(14) G, spin-down power Ė =5 × 10^(33) erg s^(–1), and characteristic age P/2Ṗ =9 × 10^3 yr for the rotating dipole model. However, the current Ṗ may be erratic, especially during outburst. The flux and modulation remained steady during the observations and the 3-79 keV spectrum is well fitted by a combined blackbody plus power-law model with temperature kT_(BB) = 0.96 ± 0.02 keV and photon index Γ = 1.5 ± 0.4. The neutral hydrogen column density (N_H ~ 1.4 × 10^(23) cm^(–2)) measured by NuSTAR and Swift suggests that SGR J1745–29 is located at or near the Galactic center. The lack of an X-ray counterpart in the published Chandra survey catalog sets a quiescent 2-8 keV luminosity limit of L_x ≾ 10^(32) erg s^(–1). The bursting, timing, and spectral properties indicate a transient magnetar undergoing an outburst with 2-79 keV luminosity up to 3.5 × 10^(35) erg s^(–1) for a distance of 8 kpc. SGR J1745–29 joins a growing subclass of transient magnetars, indicating that many magnetars in quiescence remain undetected in the X-ray band or have been detected as high-B radio pulsars. The peculiar location of SGR J1745–29 has important implications for the formation and dynamics of neutron stars in the Galactic center region.


Proceedings of SPIE | 2010

The Nuclear Spectroscopic Telescope Array (NuSTAR)

Fiona A. Harrison; S. E. Boggs; Finn Erland Christensen; William W. Craig; Charles J. Hailey; Daniel Stern; William W. Zhang; Lorella Angelini; Hongjun An; Varun Bhalerao; Nicolai F. Brejnholt; Lynn R. Cominsky; W. Rick Cook; Melania Doll; P. Giommi; Brian W. Grefenstette; A. Hornstrup; V. M. Kaspi; Yunjin Kim; Takeo Kitaguchi; Jason E. Koglin; Carl Christian Liebe; Greg M. Madejski; Kristin K. Madsen; Peter H. Mao; David L. Meier; Hiromasa Miyasaka; Kaya Mori; Matteo Perri; Michael J. Pivovaroff

The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining the explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a guest observer program will be proposed for an extended mission to expand the range of scientic targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto a solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit, NuSTAR largely avoids SAA passage, and will therefore have low and stable detector backgrounds. The telescope achieves a 10.14-meter focal length through on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will be publicly available at GSFCs High Energy Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.


The Astrophysical Journal | 2002

A Novel Antimatter Detector Based on X-Ray Deexcitation of Exotic Atoms

Kaya Mori; Charles J. Hailey; Edward A. Baltz; William W. Craig; Marc Kamionkowski; William T. Serber; Piero Ullio

We propose a novel antiparticle detector. The gaseous antiparticle spectrometer (GAPS) effects particle identification through the characteristic X-rays emitted by antiparticles when they form exotic atoms in gases. GAPS obtains particularly high grasp (effective area-solid angle product) at lower particle energies, where conventional schemes are most limited in their utility. The concept is simple and lightweight, so it can be readily employed on balloon- and space-based missions. An extremely powerful potential application of GAPS is a space-based search for the neutralino through the detection of a neutralino annihilation by-product?the antideuteron. Paradoxically, this space-based search for the neutralino is capable of achieving comparable sensitivity to as yet unrealized third-generation, underground dark matter experiments. And GAPS can obtain this performance in a very modest satellite experiment. GAPS can also provide superior performance in searches for primary antiprotons produced via neutralino annihilation and black hole evaporation and in probing subdominant contributions to the antiproton flux at low energies. In a deep space mission, GAPS will obtain higher sensitivity for a given weight and power than BGO calorimeters.


The Astrophysical Journal | 2015

Rapid variability of blazar 3C 279 during flaring states in 2013-2014 with joint FERMI-LAT, NuSTAR, SWIFT, and ground-based multi-wavelength observations

M. Hayashida; Krzysztof Nalewajko; G. M. Madejski; Marek Sikora; R. Itoh; M. Ajello; R. D. Blandford; S. Buson; J. Chiang; Yasushi Fukazawa; A. K. Furniss; Claudia M. Urry; I. Hasan; Fiona A. Harrison; D. M. Alexander; M. Baloković; Didier Barret; S. E. Boggs; Finn Erland Christensen; W. W. Craig; K. Forster; Paolo Giommi; Brian W. Grefenstette; C. Hailey; A. Hornstrup; Takao Kitaguchi; Jason E. Koglin; K. K. Madsen; Peter H. Mao; Hiromasa Miyasaka

We report the results of a multiband observing campaign on the famous blazar 3C 279 conducted during a phase of increased activity from 2013 December to 2014 April, including first observations of it with NuSTAR. The gamma-ray emission of the source measured by Fermi-LAT showed multiple distinct flares reaching the highest flux level measured in this object since the beginning of the Fermi mission, with F(E > 100 MeV) of 10^(-5) photons cm^(-2) s^(-1), and with a flux-doubling time scale as short as 2 hr. The gamma-ray spectrum during one of the flares was very hard, with an index of Gamma(gamma) = 1.7 +/- 0.1, which is rarely seen in flat-spectrum radio quasars. The lack of concurrent optical variability implies a very high Compton dominance parameter L-gamma/L-syn > 300. Two 1 day NuSTAR observations with accompanying Swift pointings were separated by 2 weeks, probing different levels of source activity. While the 0.5 - 70 keV X-ray spectrum obtained during the first pointing, and fitted jointly with Swift-XRT is well-described by a simple power law, the second joint observation showed an unusual spectral structure: the spectrum softens by Delta Gamma(X) similar or equal to 0.4 at similar to 4 keV. Modeling the broadband spectral energy distribution during this flare with the standard synchrotron plus inverse-Compton model requires: (1) the location of the gamma-ray emitting region is comparable with the broad-line region radius, (2) a very hard electron energy distribution index p similar or equal to 1, (3) total jet power significantly exceeding the accretion-disk luminosity L-j/L-d greater than or similar to 10, and (4) extremely low jet magnetization with L-B/L-j less than or similar to 10^(-4). We also find that single-zone models that match the observed gamma-ray and optical spectra cannot satisfactorily explain the production of X-ray emission.


The Astrophysical Journal | 2014

Timing and Flux Evolution of the Galactic Center Magnetar SGR J1745–2900

Victoria M. Kaspi; R. F. Archibald; Varun Bhalerao; Francois Dufour; E. V. Gotthelf; Hongjun An; Matteo Bachetti; Andrei M. Beloborodov; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Brian W. Grefenstette; Charles J. Hailey; Fiona A. Harrison; J. A. Kennea; C. Kouveliotou; Kristin K. Madsen; Kaya Mori; Craig B. Markwardt; Daniel Stern; Julia K. Vogel; William W. Zhang

We present the X-ray timing and spectral evolution of the Galactic Center magnetar SGR J1745−2900 for the first ~4 months post-discovery using data obtained with the Nuclear Spectroscopic Telescope Array and Swift observatories. Our timing analysis reveals a large increase in the magnetar spin-down rate by a factor of 2.60 ± 0.07 over our data span. We further show that the change in spin evolution was likely coincident with a bright X-ray burst observed in 2013 June by Swift, and if so, there was no accompanying discontinuity in the frequency. We find that the source 3–10 keV flux has declined monotonically by a factor of ~2 over an 80 day period post-outburst accompanied by a ~20% decrease in the sources blackbody temperature, although there is evidence for both flux and kT having leveled off. We argue that the torque variations are likely to be magnetospheric in nature and will dominate over any dynamical signatures of orbital motion around Sgr A*.


The Astrophysical Journal | 2014

NuSTAR DETECTION OF HIGH-ENERGY X-RAY EMISSION AND RAPID VARIABILITY FROM SAGITTARIUS A⋆ FLARES

John A. Tomsick; F. K. Baganoff; Steven E. Boggs; Finn Erland Christensen; William W. Craig; Jason Dexter; Brian W. Grefenstette; Charles J. Hailey; Fiona A. Harrison; Kristin K. Madsen; Kaya Mori; Daniel Stern; William W. Zhang; Shuo Zhang; Andreas Zoglauer

Sagittarius A* harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A* spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A* X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (~55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ~10 Schwarzschild radii of the black hole.


Monthly Notices of the Royal Astronomical Society | 2007

Modelling mid-Z element atmospheres for strongly magnetized neutron stars

Kaya Mori; Wynn C. G. Ho

We construct models for strongly magnetized neutron star atmospheres composed of midZ elements (carbon, oxygen and neon) with magnetic fields B = 10 12 ‐10 13 G and effective temperatures T eff = (1 ‐ 5) × 10 6 K; this is done by first addressing the physics relevant to strongly magnetized plasmas and calculating the equation of state and polarization-dependent opacities. We then obtain the atmosphere structure and spectrum by solving the radiative transfer equations in hydrostatic and radiative equilibrium. In contrast to hydrogen opacities at the relevant temperatures, mid-Z element opacities are dominated by numerous bound‐bound and bound‐free transitions. Consequently, temperature profiles are closer to grey profiles, and photosphere densities are lower than in the hydrogen case. Mid-Z element atmosphere spectra are significantly softer than hydrogen atmosphere spectra and show numerous absorption lines and edges. The atmosphere spectra depend strongly on surface composition and magnetic field but weakly on surface gravity. Absorption lines are primarily broadened by motional Stark effects and the (unknown) surface magnetic field distribution. When magnetic field variation is not severe, substructure in broad absorption features can be resolved by (phase-resolved) CCD spectroscopy from Chandra and XMM‐Newton. Given the multiple absorption features seen in several isolated neutron stars (INSs), it is possible to determine the surface composition, magnetic field, temperature and gravitational redshift with existing X-ray data; we present qualitative comparisons between our model spectra and the neutron stars 1E1207.4−5209 and RX J1605.3+3249. Future high-resolution X-ray missions such as Constellation-X will measure the gravitational redshift with high accuracy by resolving narrow absorption features; when combined with radius measurements, it will be possible to uniquely determine the mass and radius of INSs.


The Astrophysical Journal | 2005

Detailed Spectral Analysis of the 260 ks XMM-Newton Data of 1E 1207.4–5209 and Significance of a 2.1 keV Absorption Feature

Kaya Mori; James Chonko; Charles J. Hailey

We have reanalyzed the 260 ks XMM-Newton observation of 1E 1207.4-5209. There are several significant improvements over previous work. First, a much broader range of physically plausible spectral models was used. Second, we have used a more rigorous statistical analysis. The standard F-distribution was not employed, but rather the exact finite statistics F-distribution was determined by Monte Carlo simulations. This approach was motivated by the recent work of Protassov and coworkers and Freeman and coworkers. They demonstrated that the standard F-distribution is not even asymptotically correct when applied to assess the significance of additional absorption features in a spectrum. With our improved analysis we do not find a third and fourth spectral feature in 1E 1207.4-5209 but only the two broad absorption features previously reported. Two additional statistical tests, one line model dependent and the other line model independent, confirmed our modified F-test analysis. For all physically plausible continuum models in which the weak residuals are strong enough to fit, the residuals occur at the instrument Au M edge. As a sanity check we confirmed that the residuals are consistent in strength and position with the instrument Au M residuals observed in 3C 273.

Collaboration


Dive into the Kaya Mori's collaboration.

Top Co-Authors

Avatar

Charles J. Hailey

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona A. Harrison

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Finn Erland Christensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

William W. Zhang

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Stern

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jason E. Koglin

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian W. Grefenstette

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge